期刊文献+

体内氮气脱饱和与再饱和过程的数学模型

A Mathematical Model for the Process of Desaturation and Resaturation of N 2 in Human Body
下载PDF
导出
摘要 研究了吸纯O2排N2和环境压力降低排N2的脱饱和过程以及环境压力升高溶解N2的再饱和过程,发现三个过程共同遵循着指数规律变化并建立了相应的数学模型,对减压病的预测和防护进行了理论探讨。其数学表达式为:v=v+(v。-v)e-bt,v表示t时刻体内N2含量,v。为初始稳定状态N2含量饱和值,v为到达的终止稳定状态N2含量饱和值,b为常数。其微分方程式为dv/dt=-b(v-v),表示某时刻体内N2的变化速率同N2含量瞬时值与到达终止状态的饱和值之差成正比。在利用文献中的实测结果确定出常数值以后,利用数学表达式计算出某时刻体内的N2含量和达到某N2含量所需时间。这一模型对航空、航天和航海中减压病的防护均有实际意义。 N 2 content changes in human body were studied in the process of N 2 desaturation during preoxygenation or decompression and of N 2 resaturation during compression .It was found that the N 2 content change observed the exponential law with time and the corresponding mathematical model was established as follows: v=v+(v 0-v)e -bt . v─instantaneous value of N 2 content; v 0─ N 2 saturation value in initial and steady state; v─ N 2 saturation value in final and steady state; b─constant; A differential equation is written as :dv/dt=-b(v-v), which indicates that the change rate of N 2 content at a certain moment is proportional to the difference between instantaneous value and final-steady value of N 2 content in human body. The mathematical model may be applied to prevent against decompression sickness in aviation,navigation and space flight.
出处 《航天医学与医学工程》 CAS CSCD 1996年第3期179-183,共5页 Space Medicine & Medical Engineering
关键词 减压病 吸氧排氮 数学模型 饱和 脱饱和 decompression sickness preoxygenation mathematical models nitrogen saturation desaturation
  • 相关文献

参考文献3

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部