期刊文献+

A New Theorem of Existence of Solutions to Nonlinear Three-Point Boundary Value Problem 被引量:3

非线性三点边值问题解的一个新的存在定理(英文)
下载PDF
导出
摘要 Very recently, we have found that the method used in our recent paper (appeared in 2005) could be extended to obtain two general series-transformation formulas for formal power series defined over the complex number field. As usual, △, △k, D, and Dk denote, respectively, the difference and differential operators with △f(t) = f(t + 1) - f(t), Dr(t) = (d/dr)f (t) and △^0 = D0 = 1 (the identity operator). What we have obtained are the following two general transformation formulas (formal expansion formulas) ∞∑k=0 f(k)φ^(k)(0)t^k/k!=∞∑k=0△^kf(0)φ^(k)(0)t^k/k! (1) ∞∑k=0 f(k)φ^(k)(0)t^k/k!=∞∑k=01/k!f(0)φ^(k)(0)t^k/k! (2) 利用Krasnoselskii-Zabreiko不动点定理获得了非线性三点边值问题解的一个新的存在定理.
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2005年第4期582-588,共7页 数学研究与评论(英文版)
基金 the Natural Science Foundation of Gansu Province of China
关键词 nonlinear three-point boundary value problem EXISTENCE fixed point. 非线性三点边值问题 存在性 不动点
  • 相关文献

参考文献11

  • 1II'in V A, MOISEEV E I. Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator[J]. Differential Equations, 1987, 23: 979-987. 被引量:1
  • 2GUO Da-jun, LAKSHMIKANTHAM V. Nonlinear problems in Abstract Cones [M]. Notes and Reports in Mathematics in Science and Engineering, 5. Academic Press, Inc., Boston, MA, 1988. 被引量:1
  • 3GUPTA C P. Solvability of a three-point nonlinear boundary value problems for a second order ordinary differential equation [J]. J. Math. Anal. Appl., 1992, 168: 540-551. 被引量:1
  • 4GUPTA C P. A sharp condition for the solvability of a three-point second order boundary value problem [J].J. Math. Anal. Appl., 1997, 205: 579-586. 被引量:1
  • 5C. P. Gupta and S.Trofimchuk. Existence of a solution to a three-point boundary value problem and the spectral radius of a related linear operator [J]. Nonlinear Anal., 1998, 34: 498-507. 被引量:1
  • 6MA Ru-yun. Existence theorems for a second order three-point boundary value problem [J]. J. Math. Anal.Appl., 1997, 212: 430-442. 被引量:1
  • 7MA Ru-yun. Positive solutions of a nonlinear three-point boundary value problem [J]. E. J. Differential Equations, 1999, 34: 1-8. 被引量:1
  • 8MA Ru-yun, WANG Hai-yan. Positive solutions of nonlinear three-point boundary-value problems [J]. J.Math. Anal. Appl., 2003, 279(1): 216-227. 被引量:1
  • 9SUN Jian-ping, HUO Hai-feng, LI Wan-tong. Positive solutions to singular nonlinear three point boundary value problems [J]. Dynam. Systems Appl., 2003, 12: 275-283. 被引量:1
  • 10KRASNOSELSKII M A. Positive Solution of Operator Equations [M]. Noordhoff, Groningen, 1964. 被引量:1

同被引文献17

  • 1王大斌,王国兴.一类n阶差分方程边值问题的多解性[J].兰州理工大学学报,2005,31(5):129-133. 被引量:7
  • 2王大斌,关雯.一类离散P-Laplacian方程正解的三解定理[J].甘肃科学学报,2006,18(3):25-27. 被引量:2
  • 3KONGLingju, KONG Qingkai. Multi-point boundary value problems of second-order differential equations (i) [J]. Nonlinear Anal, 2004,58 (7 - 8) :909 - 931. 被引量:1
  • 4MA Ruyun. Existence theorems for a second-order three-point boundary value problem[J].J. Math. Anal, 1997, (212) : 430 - 442. 被引量:1
  • 5BAI Zhanbing,GE Weigao. Existence of three positive solutions for some second-order boundary value problems[J]. Computers and Mathematics with Applications, 2004,48 (5 - 6): 699 - 707. 被引量:1
  • 6AVERY R I. A generalization of the Leggett-Williams fixed point theorem[J]. Mathematical Sci-ences Research Hot-Line, 1999,3(7) : 9 - 14. 被引量:1
  • 7郭大钧.非线形泛函析[M].济南:山东科学技术出版社,2002. 被引量:1
  • 8HE Zhimin,YU Jianshe. On the existence of positive solutions of fourth-order difference equation [J]. Applied Mathematies and Computation, 2004,156 : 857-870. 被引量:1
  • 9SUN Jianping. A new existence theorem for right focal boundary value problems on a measure chain [J]. Applied Mathematics Letters, 2005,18: 41-47. 被引量:1
  • 10AGARWAL R P, LALLI B S. Discrete polynomial interpolation, Green' s functions, maximum principles, error bounds and boundary value problems [J]. Computer and Mathematics with Applications, 1993,25(8) : 3-39. 被引量:1

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部