期刊文献+

金融资产收益率尾概率估计研究 被引量:3

Study on Tail Probability Estimation of Financial Asset
原文传递
导出
摘要 在对金融资产进行投资时,投资者所关注的问题往往是金融资产收益率发生大波动的概率,简称尾概率.本文利用大偏差定理对此概率如何进行估计进行深入研究.将收益率按其尾部的分布特征分成三类,分别对其进行研究,得到三种不同的估计公式.本文对收益率序列存在相关性、收益率是多元随机变量情况下的尾概率估计问题也进行了分析. When people invest the financial assets, the primary problem which investors pay attention to is often the large fluctuation probability of financial asset return, for short tail probability. By use of large deviation theorem, this paper researches deeply to how to estimate such probability. The asset returns are divided into three kinds according to the characteristics of the tail distribution. After studying each state respectlvely,we can get three kinds of the different probability estimate formulae. This paper analyses also the probability estimate problems under the conditions that return series is correlated and return is multivariate stochastic variable.
作者 卢方元
机构地区 郑州大学商学院
出处 《数学的实践与认识》 CSCD 北大核心 2005年第10期134-139,共6页 Mathematics in Practice and Theory
基金 国家统计局重点项目(编号:lx03-04)资助
关键词 收益率 尾概率 大偏差定理 概率估计 尾分布 金融资产 偏差定理 估计公式 估计问题 随机变量 return tail probability large deviation theorem probability estimate tail distribution
  • 相关文献

参考文献15

  • 1Weron R. Levy-stable distributions revisited: tail index>2 does not exclude the Levy-stable regime [J].International Journal of Modern. Physics C, 2001, 12(2):209-223. 被引量:1
  • 2Balkema A A. De Haan L. Residual lifetime at great age[J]. Annals of Probability, 1974.2:792-804. 被引量:1
  • 3Hosking J R M, Wallis J R. Parameter and quantile estimation for the generalized Pareto distribution [J],Tecbnometrics. 1987, 29 : 339-349. 被引量:1
  • 4McNeil A J. Extreme value theory for risk managers[C]. In Internal Modeling and CADⅡ Risk Books, 1999.93-113. 被引量:1
  • 5Cramér H. Sur un noveaux théoréme-limite de la thérie des probabilities [J]. Aetualitès Scientifiques et Industrialles. 1938, 736:5-23. 被引量:1
  • 6Dembo A, Zeitouni O. Large Deviations Techniques and Applications[M]. Boston:Jones and Bartlett, 1993. 被引量:1
  • 7Varadhan S R S. Large Deviations and Applications[M], Society for Industrial and Applied Mathematics. 1984. 被引量:1
  • 8Cartner J. On the large deviation for invariant measure[J]. Theory of Probability and its Application. 1977.22:27 -42. 被引量:1
  • 9Ellis R S. Large deviations for a general class of random vectors[J]. Ann Prob. 1984, 12:1-12,. 被引量:1
  • 10Cont R, Empirical properties of asset returns:stylized facts and statistical issues[J]. Quantitative Finance.2001.1 : 223-236. 被引量:1

同被引文献23

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部