期刊文献+

原子-场强度相关耦合时原子质心平移运动与内态布居的关系

Correlation between the atomic translational motion and its internal state population for the intensity-dependent coupling
下载PDF
导出
摘要 基于原子与腔场共振相互作用及原子-场缀饰态,讨论了驻波腔场中两能级原子与场耦合强度相关时的原子质心的量子化平移运动对原子内态布居间的相互影响。结果表明原子平移运动敏感地依赖于原子的内态布居。特别地,当原子处于两内态等权重同位相迭加态时,平移运动呈现出很稳定的特征。 The influence of the atomic internal state population on its translational motion in a quantized standing-wave cavity field with spatial periodic structure is investigated for the intensity-dependent coupling case. On the basis of resonance interaction between the atom and the cavity field and with the aid of the atomic-field dressed state, the Schrodinger equations satisfied by the atomic translational motion for the two different atomic dressed internal states are built and their general relation for a spatial periodic cavity field is obtained. And under an appropriate approximation, the state vector of the whole system is derived and allows us to study the interaction between the atomic internal state and its translational dynamics. It is found that the scalar product of the translational motion wave functions in Hilbert space determines the atomic internal state population, as well as, the distortion of the atomic translational motion wave-packet is sensitivity to its initial internal state population for a quantized standing-wave cavity field at coherent state.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2005年第4期762-768,共7页 Journal of Atomic and Molecular Physics
基金 湖南省自然科学基金(03Jy6003) 湖南省教育厅基金(03c5340)资助课题
关键词 驻波腔场 两能级原子 平移运动 内态布居 Standing-wave cavity field, Two-level atom, Translational motion, The atomic internal state population
  • 相关文献

参考文献9

  • 1Haroche S. In Fundamental system in Quantum Optics[M].1990 Les Houches Lectures L Ⅲ(Elsevier,Amsrerdam,1992). 被引量:1
  • 2Cirone M,Rzazewski K,Mostowski J.Effects of motional states of a trapped atom on its interaction with nonresonant light [J].Phys.Rev, 1998,A67:1202. 被引量:1
  • 3Ren W, Carmichael H.J. Spontaneous emission in a standing-wave cavity: Quantum-mechanical center-of-mass motion[J].Phys.Rev,1995.A51:752. 被引量:1
  • 4Doherty A C, Parkins A S, Tan S M,et al.Motional states of stoms in cavity QED [J].Phys.Rev,1998,A57:4804. 被引量:1
  • 5Vernooy D W,Kimble H J. Well-dressed states for wave-packet dynamics in cavity QED[J].Phys.Rev,1997,A56:4287. 被引量:1
  • 6Pellizzari T,Gardiner S A,Cirac J I,et al. Decoherence, continous observation, quantum computing:A cavity QRD model[J]. Phys.Rev.Lett,1995,75:3788. 被引量:1
  • 7Vaglica A. Correlations btween Rabi oscillations and atomic translational dynamics[J].Phys.Rev, 1998, A58: 3856. 被引量:1
  • 8唐京武,黄笃之.高Q-腔中量子化平移运动与原子内态布居的关系[J].湘潭师范学院学报(自然科学版),2002,24(3):13-16. 被引量:1
  • 9Dattoli G, Solimeno S, Toore T. Algebraic time-ordering techniques and Harmonic oscillator with time-dependent frequency[J].Phys.Rev,1986, A34:2646. 被引量:1

二级参考文献5

  • 1S Haroche. in Fundamental System in Quantum Optics[M],1990 Les Houches Lectures, Session LⅢ(Elsevier, Amsrerdam, 1992). 被引量:1
  • 2D W Vernooy, H J Kimble. Phys Rev,1997,A56:4287. 被引量:1
  • 3T Pellizzari , S A Gardiner. J I Cirac. Decoherence, continous observation ,and quantum computing: A cavity QED model [J],Phys Rev Lett, 1995 75:3788. 被引量:1
  • 4A Vaglica. Correlation between Rabi oscillations and atomic translational dynamics[J]. Phys Rev, 1998,58:3856-3867. 被引量:1
  • 5G Dattoli, S Solimeno, A Toore. Algebraic time-ordering techniques and harmonic oscillator with time-dependent frequency[J]. Phys Rev, 1986, A34: 2646. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部