期刊文献+

机器人定位中的自适应粒子滤波算法 被引量:3

Novel Adaptive Particle Filters in Robot Localization
下载PDF
导出
摘要 The research of robot localization aims at accuracy, simplicity and robustness. This article improves the performance of particle filters in robot localization via the utilization of novel adaptive technique. The proposed algorithm introduces probability retracing to initialize particle sets, uses consecutive window filtering to update particle sets, and refreshes the size of particle set according to the estimation state. Extensive simulations show that the proposed algorithm is much more effective than the traditional particle filters. The proposed algorithm successfully solves the nonlinear, non-Gaussian state estimation problem of robot localization. The research of robot localization aims at accuracy, simplicity and robustness. This article improves the performance of particle filters in robot localization via the utilization of novel adaptive technique. The proposed algorithm introduces probability retracing to initialize particle sets, uses consecutive window filtering to update particle sets, and refreshes the size of particle set according to the estimation state. Extensive simulations show that the proposed algorithm is much more effective than the traditional particle filters. The proposed algorithm successfully solves the nonlinear, non-Gaussian state estimation problem of robot localization.
出处 《自动化学报》 EI CSCD 北大核心 2005年第6期833-838,共6页 Acta Automatica Sinica
基金 国家自然科学基金
关键词 机器人 定位技术 自适应粒子 滤波算法 K-L距离 Robot localization, particle filters, K-L distance, probability retrieval
  • 相关文献

参考文献16

  • 1Burgard W, Fox D, Hennig D, Schmidt T. Estimating the absolute position of a mobile robot using position probability grids. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-96),1996. 896-901 被引量:1
  • 2Roumeliotis S I, Bekey G A. Bayesian estimation and Kalman filtering: A unified framework for mobile robot localization. In: Proceedings of the IEEE International Conference on Robotics & Automation. San Francisco, CA, USA, 2000. 2985-2992 被引量:1
  • 3Jensfelt P, Wijk O, Austin D, Andersson M. Feature based condensation for mobile robot localization. In:Proceedings of the IEEE International Conference on Robotics & Automation. San Francisco, CA, USA,2000.2531-2537 被引量:1
  • 4Gordon N J, Salmond D J, Smith A F M. A novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings on Radar and Signal Processing, 1993, 140:107-113 被引量:1
  • 5Doucet A, Freitas N, Gordon N. Sequential Monte Carlo Methods in Practice. New York: Springer, 2001 被引量:1
  • 6Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering. Stat.Comput, 2000, 3:197-208 被引量:1
  • 7Leonard J, Durrant-Whyte H. Directed Sonar Sensing for Mobile Robot Navigation. Cambridge, MA, USA:Kluwer Academic Publishers, 1992 被引量:1
  • 8Schiele B, Crowley J. A comparison of position estimation techniques using occupancy grids. In: Proceedings of ICRA-94. 1994. 1628-1634 被引量:1
  • 9Gutmann J S, Schlegel C. AMOS: Comparison of scanmatching approaches for self-localization in indoor environments. In: Proceedings of Euromicro. IEEE Computer Society Press. 1996, 被引量:1
  • 10Thrun S, Fox D, Burgard W. Robust Monte Carlo localization for mobile robots. Artificial Intelligence, 2000,128(1-2): 99-114 被引量:1

同被引文献62

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部