期刊文献+

拉格朗日松弛算法在平台罗经多故障诊断技术中的应用研究 被引量:2

Multiple Fault Diagnosis Technology for Stabilized Gyrocompass Based on Lagrangian Relaxation Algorithm
下载PDF
导出
摘要 最优多故障诊断问题是一个NP-hard问题。针对平台罗经这一复杂系统,采用有向图描述元件与测试点间的因果依赖关系,并建立系统的多信号模型。在考虑元件发生故障的先验概率的前提下,提出一种基于拉格朗日算法(LRA)和子梯度优化算法(SOA)近最优多故障诊断算法,并在某型平台罗经的方位稳定系统多故障诊断中得到应用。结果表明:该方法相对于传统的单故障诊断方法诊断速度快,适用于平台罗经这类大型复杂系统的多故障诊断。 The exact computation of conditional probabilities for the multiple fault diagnosis (MFD) is NP-hard. The multi-signal model for complex stabilized gyrocompass is presented which uses diagram to subscribe the causal dependency relationship among components and test nodes. A heuristic algorithm to find approximately the most likely candidate fault set was introduced which is based on Lagrangian relaxation algorithm (LRA) and Subgradient optimization algorithm (SOA) under the consideration for prior probability of the components failure of system and the test nodes. The proposed method is validated in one test for the azimuth-stabilized system of stabilized gyrocompass. The results show that the reasoning process is faster than the traditional method using single-fault diagnosis. This novel method can be applied in MFD for the stabilized gyrocompass system.
出处 《中国惯性技术学报》 EI CSCD 2005年第5期73-77,共5页 Journal of Chinese Inertial Technology
基金 国家杰出青年科学基金项目(40125013)
关键词 多故障诊断 拉格朗日松弛算法 子梯度优化法 平台罗经 multiple fault diagnosis Lagrangian relaxation algorithm subgradient optimization stabilized gyrocompass
  • 相关文献

参考文献9

  • 1龙兵,姜兴渭,宋政吉.基于多信号模型航天器多故障诊断技术研究[J].宇航学报,2004,25(5):591-594. 被引量:26
  • 2Y Peng, Reggia J A. A connectionist model for diagnostic problem solving[J]. IEEE Transaction on SMC, 1989, 19(2): 285-298. 被引量:1
  • 3Binglin Z, Tinghu Y, Ren H. A genetic algorithm for diagnosis problem solving[A]. Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics[C]. LeTouquet, France, 1993: 404-408. 被引量:1
  • 4Wu T D. A problem decomposition method for efficient diagnosis and interpretation of multiple disorders[J]. Compu. Methods Programs Biomed, 1991, 35(2): 39-250. 被引量:1
  • 5Fang Tu, Pattipati K R, Deb S, et al. Computationally efficient algorithms for multiple fault diagnosis in large graph-based systems[J]. IEEE Transaction on SMC, 2003, 33(1): 73-85. 被引量:1
  • 6Deb S,Pattipati K R, et al. Multi-singal flow graphs:A novel approach for system testability analysis and fault diagnosis[J]. IEEE Aerospace and Electronics Magazine, 1995, 10(5): 14-25. 被引量:1
  • 7Jaynes E T. Probability theory: The logic of science[M]. Cambridge, U.K: Cambridge Univ. Press, Apr. 2003. 130-131. 被引量:1
  • 8Shakeri M, Pattipati K R, Raghavan V. et al. Optimal and near-optimal algorithms for multi fault diagnosis with unreliable tests[J]. IEEE Transaction on SMC, 1998, 28 (3): 431-440. 被引量:1
  • 9F. Yu, F.Tu, H. Tu. et al. Multiple disease(fault) diagnosis with application to the QMR-DT problem[A]. IEEE International Conference on Systems, Man and Cybernetics[C]. Washington DC, 2003: 1187-1192. 被引量:1

二级参考文献11

  • 1Shakeri M, Pattipati K R, Raghavan V. et al . Optimal and near-optimal algorithms for multiple fault diagnosis with unreliable tests[J]. IEEE Trans. on SMC, 1998, 28(3): 431-440 被引量:1
  • 2Fang Tu, Pattipati K R, Deb S, et al. Computationally efficient algorithms for multiple fault diagnosis in large graph-based systems[J]. IEEE Trans. on SMC, 2003,33(1):73-85 被引量:1
  • 3Deb S, Pattipati K R, et al. Multi-signal Flow Graphs: A Novel Approach for System Testability Analysis and Fault iagnosis[J]. IEEE Aerospace and Electronics Magazine, 1995, 10(5): 14-25 被引量:1
  • 4Deb S,Domagala C, et al. Remote diagnosis of the International Space Station utilizing telemetry data. Proceedings of the SPIE Aerosense Conference, Orlando, FL, April 16-20, 2001 被引量:1
  • 5Davis R.Retrospective on diagnostic reasoning based on structure and behavior.Artif. Intell.,1993,59:149-157. 被引量:1
  • 6Kleer J de and Williams B C.Diagnosing multiple faults.Artif. Intell.,1987, 32:97-130. 被引量:1
  • 7Shakeri M.Advances in system fault modeling and diagnosis.PhD dissertation, Dept. Elect. Syst. Eng., Univ. Connecticut, Storrs,1996. 被引量:1
  • 8张炜,张玉祥,黄先祥.基于神经网络的涡轮泵多故障诊断[J].推进技术,2003,24(1):17-20. 被引量:10
  • 9陈启智.液体火箭发动机故障检测与诊断研究的若干进展[J].宇航学报,2003,24(1):1-11. 被引量:29
  • 10邢琰,吴宏鑫,王晓磊,李智斌.航天器故障诊断与容错控制技术综述[J].宇航学报,2003,24(3):221-226. 被引量:70

共引文献25

同被引文献18

引证文献2

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部