期刊文献+

物理学中的两种概率论

Two Probability Theories in Physics
下载PDF
导出
摘要 对于双缝衍射实验,概率幅的迭加原理是指当两条缝同时打开时,一个电子通过某一条缝达到屏幕上某处的概率幅等于两条缝轮流打开时,该事件的两个概率幅之和。从这一原理得出结论:概率本身不遵循迭加原理,而这就是经典概率论不适用于微观过程的原因。柯氏概率论立足于概率的频率定义与事件运算的布尔代数两大基石,在微观过程中,概率的频率定义仍然有效,但事件运算不再遵循布尔代数的规则,特别是不遵循其乘法的交换律。因此,只要不涉及事件运算,柯氏概率论的联合概率的概念还是可以用于微观过程。但是当涉及事件运算时,将联合概率的运算公式应用于微观过程很可能得出错误的结论,贝尔不等式就是这样一个错误的结论。 It is proved that in double slit diffraction experiments, superposition principle of probability amplitude means the probability amplitude of the event that an electron passes through a certain slit and arrives somewhere on the screen under the condition that two slits open simultaneously, is equal to the sum of two probability amplitudes of the same event under the condition that two slits open in turn. From this thesis it is concluded that the probabilities do not obey superposition principle, which is just the reason why classical probability theory is inapphcable for the very experiment. Kolmogorov' s probability theory is based on two foundations: frequency definition of probabilities and Boolean algebra of event operations. In micro processes, the former still holds true while the latter, especially its muhiplicative permutation law, is violated. Hence, so long as we do not deal with event operations, joint probabilities holds good in micro processes; but provided the event operation formulae are applied, the wrong conclusions result from joint probabilities probably. The famous Bell' s inequality is just such a wrong conclusion.
作者 谭天荣
出处 《河池学院学报》 2005年第5期1-8,共8页 Journal of Hechi University
关键词 双缝衍射实验 斯特恩-革拉赫实验 概率幅 柯氏概率论 布尔代数 double slit diffraction experiment Stern -Gerlach experiment probability amplitudes Kolmogorov's probability theory Boolean algebra
  • 相关文献

参考文献4

  • 1[1]Feynman R P. The Feynman Lectures on Physics, Vol. 3. 被引量:1
  • 2[2]Lochak G. Has Bell' s Inequality a General Meaning for Hidden -Variable Theories [J]. Foundations of Physics, 1976, 6 (27). 被引量:1
  • 3[3]Lochak G. De Broglie' s Initial Conception of de Broglie Waves [A]. Diner S et al. (ads.) The Wave - Particle Dualism [C]. D Reidel Publishing Company, 1984. 被引量:1
  • 4[4]Accardi L. The Probabilistic roots of the quantum mechanical paradoxes[A]. S. Diner et al. ( ads. ), The Wave - Particle Dualism [C]. 1984.297 - 330. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部