摘要
In transversely isotropic media with a vertical symmetry axis (VTI), the converted-wave (C-wave) moveout over intermediate-to-far offsets is determined by four parameters. These are the C-wave stacking velocity Vc2 , the vertical and effective velocity ratios γ0 and γeff, and the anisotropic parameter χeff. We refer to the four parameters as the C-wave stacking velocity model. The purpose of C-wave velocity analysis is to determine this stacking velocity model. The C-wave stacking velocity model Vc2, γ0, γeff, and χeff can be determined from P-and C-wave reflection moveout data. However, error propagation is a severe problem in C-wave reflection-moveout inversion. The current short-spread stacking velocity as deduced from hyperbolic moveout does not provide sufficient accuracy to yield meaningful inverted values for the anisotropic parameters. The non-hyperbolic moveout over intermediate-offsets (x/z from 1.0 to 1.5) is no longer negligible and can be quantified using a background γ. Non-hyperbolic analysis with a γ correction over the intermediate offsets can yield Vc2 with errors less than 1% for noise free data. The procedure is very robust, allowing initial guesses of γ with up to 20% errors. It is also applicable for vertically inhomogeneous anisotropic media. This improved accuracy makes it possible to estimate anisotropic parameters using 4C seismic data. Two practical work flows are presented for this purpose: the double-scanning flow and the single-scanning flow. Applications to synthetic and real data show that the two flows yield results with similar accuracy but the single-scanning flow is more efficient than the double-scanning flow.
在具有垂直对称轴横向各向同性介质中,利用四种参数来确定中间至远偏移距转换波(C-波)动校正。它们是C-波叠加速度VC2,垂直速度比和有效速度比γ和γeff,以及各向异性参数χeff。我们将这四种参数作为C波叠加速度模型。C-波速度分析的目的就是确定这种叠加速度模型。C-波叠加速度模型VC2,γ0,γeff,和χeff可以由P-波和C-波反射动校正资料获得。然而错误的传播是C-波反射动校正反演中的严重问题。当前短排列叠加速度由于是从双曲线动校正推算而得,因而其精度不足以为各向异性参数提供有意义的反演值。中间偏移非双曲线动校正不再被人们所勿略,而是可以用一个背景γ加以量化。非双曲线分析通过中间偏移距的γ校正量可以产生VC2,若数据不含燥音,其误差小于1%。方法稳健,允许γ启始假定值的误差达20%。该方法也适用垂直非均匀各向异性介质。精度的提高使能够用4分量地震资料计算各向异性参数。为此提出了两种工作流程:双扫描和单扫描流程。理论数据和实际数据的应用表明这两种流程得出的结果其精度相似,但是单扫描流程比双扫描更有效。
基金
This work is funded by the Edinburgh Anisotropy Project of the British Geological Survey.