摘要
研究环面T2上只有一个正则奇点的Fuchs方程.得到了参数λ=6时,方程有一个椭圆函数解,其任何解皆为半纯函数,以及方程的单值群为可解群的结果.在此基础上,将Riemann球面上Fuchs方程的可积性概念推广到环面上,并得到一系列环面Fuchs方程都是可积的结果.
A class of Fuchsian equations on the torns T2 is studied. In the case of parameter λ=6,there exists an elliptic function solution,each solution of which is a meromorphic function, and it's monodromy group is soluable.Soluability of the monodromy groups is used to define the integrablity for Fuchsian equations on the torns T2,and in this sense,these equations are integrable for a serie of parameters.
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
1996年第1期71-77,共7页
Journal of Beijing University of Aeronautics and Astronautics
基金
国家自然科学基金
关键词
正则奇点
正则微分方程
方程解
可解群
regularity singular points
regular diferential equations
solution of eqation
monodromy
soluble groups