期刊文献+

一种融合粗集理论和神经网络的分类数据挖掘算法 被引量:2

One Sortable Data-Mining Algorithm Integrated with Rough sets Theorem and Neural Network
下载PDF
导出
摘要 分类是一种重要的数据分析技术,可以用于提取描述重要数据类的模型和预测未来的数据趋势。提出了一种新的粗集理论和神经网络融合的分类方法。不同以往的组合方法,在该方法中粗集理论是挖掘分类知识的主体,最终的分类规则由粗集方法从约简后的决策表中得到,神经网络只是作为一种辅助工具,用来对决策表进行属性约简,并通过删除网络不能分类的数据来对决策表中的噪声进行过滤。与以往方法相比,该方法在保留神经网络高鲁棒性的同时避免了从神经网络中抽取规则的困难。 Sortation, which can be used to extract, describe major data type model and forecast the data tendency, is an important technology for data analysis. The article starts to propose a new sortable data-mining algorithm integrated with a new rough sets theorem and the neural network. Different from the previous grouping method, rough sets theorem is the main part in mining sortation knowledge. The ultimate sotatable principle can be obtained from the decision-making table which is reduced from rough sets. The neural network is only an assistant tool which can be used to reduce attribute of decision-making table. Furthermore, the tool can filter the table noise through deleting the insortable data. Compared to previous skill, this technology can remain the high stability of the neural network. At the same time, it can avoid the difficulty to extract the rule from the neural network.
作者 陈秀琼
出处 《三明学院学报》 2005年第2期185-189,共5页 Journal of Sanming University
  • 相关文献

参考文献16

二级参考文献15

  • 1王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 2[1]Shusaku Tsumoto, Hiroshi Tanaka. Extraction of domain knowledge from databases based on rough set Theory[A]. Proceedings of Fifth IEEE International Conference on Fuzzy Systems[C],1996, 2:748-754. 被引量:1
  • 3[2]Mrozek A. Rough sets and dependency analysis among attributes in computer implementations of expert′s inference models[J]. Int. Jour. Man-Machine Studies. 1989, 30(4):457-473. 被引量:1
  • 4[3]Dimitras A I, Slowinski R, Susmaga R, Zopounidis C. Business failure prediction using rough sets[J]. European Journal of Operational Research. 1999, 114(2):263-280. 被引量:1
  • 5[4]Jackson A J, Pawlak Z, LeClair S R. Rough sets applied to the discovery of materials knowledge[J]. Journal of Alloys and Compounds, 1998, 279(1): 14-21. 被引量:1
  • 6[5]Hong T P, Wang T T, Wang S L, Chien B L. Learning a coverage set of maximally general fuzzy rules by rough sets[J]. Expert Systems with Applications. 2000, 19(2):97-103. 被引量:1
  • 7[6]Pawlak Z. Rough Sets - theoretical Aspects of Reasoning about Data[M]. Boston. London Dordrecht: Kluwer Academic Publishers, 1992. 被引量:1
  • 8[7]Aleksander Ohrn. Discernibility and Rough Sets in Medicine: Tools and Applications[D]. Norwegian University of Science and Technology, Norway, 1999:53. 被引量:1
  • 9[8]Ivo Duntsch, Gunther Gediga, Uncertainty measures of rough set prediction[J]. Artificial Intelligence, 1998, 106(1): 109-137. 被引量:1
  • 10[9]Ivo Duntsch, Gunther Gediga. Roughian--rough information analysis (extended abstract)[A], A. Sydow. Proceedings 15th IMACS World Congress, Vol. 4, Wissenschaft and Technik[C], Berlin, 1997, 631-636. 被引量:1

共引文献335

同被引文献7

  • 1杨杰,姚莉秀.数据挖掘技术及其应用[M].上海:上海交通大学,2011. 被引量:12
  • 2宋膂.基于数据挖掘技术的学生成绩分析[D].重庆:重庆师范大学,2009. 被引量:1
  • 3DUNHAM M.Data mining : introductory and advanced topics [M] .Upper Saddle River,NJ :Peanon Education ,2003. 被引量:1
  • 4TAN PANG NING,MICHAEL STEINBACH,VIPIN KUMAR.数据挖掘导论[M].2版.北京:人民邮电出版社,2011. 被引量:1
  • 5QUINLAN J R. C4.5 .. programs for machine learning [ M ] .San Mateo, .-Morgan Kaufmann, 1993. 被引量:1
  • 6LIM T S,LOH W Y, SHIH Y S.A comparison of prediction accuracy,complexity,and training time of thirty-three old and new classification algorithms [J ].Machine Learning.2000(40):203-229. 被引量:1
  • 7RUGGIERI S.Efficient C4.5 [J ].IEEE Transactions on Knowledge and data engineering, 2002,14(2):438-4 4. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部