摘要
Too many sensors and data information in structural health monitoring system raise the problem of how to realize multi-sensor information fusion. An experiment on a three-story frame structure was conducted to obtain vibration test data in 36damage cases. A coupling neural network (NN) based on multi-sensor information fusion is proposed to achieve identification of damage occurrence, damage localization and damage quantification, respectively. First, wavelet packet transform (WPT) is used to extract features of vibration test data from structure with different damage extent. Then, data fusion is conducted by assembling feature vectors of different type sensors. Finally, three sets of coupling NN are constructed to implement decision fusion and damage identification. The results of experimental study proved the validity and feasibility of the proposed methodology.
Too many sensors and data information in structural health monitoring system raise the problem of how to realize multi-sensor information fusion. An experiment on a three-story frame structure was conducted to obtain vibration test data in 36 damage cases. A coupling neural network (NN) based on multi-sensor information fusion is proposed to achieve identification of damage occurrence, damage localization and damage quantification, respectively. First, wavelet packet transform (WPT) is used to extract features of vibration test data from structure with different damage extent. Then, data fusion is conducted by assembling feature vectors of different type sensors. Finally, three sets of coupling NN are constructed to implement decision fusion and damage identification. The results of experimental study proved the validity and feasibility of the proposed methodology.