摘要
探讨无互感耦合的二维N×N复杂二端自感网络的等效自感系数计算方法。将电阻网络中的Y△变换、串联、并联引入到自感网络中,并定义一个新的物理量———感导。以此为基础,通过一系列的变换,可使复杂的自感网络化简为简单的自感网络。文章以2×2的自感网络为例计算其等效感导系数的解析解。将此方法推广,便可以求得更为复杂的二维M×N网络的等效感导系数,从而得到等效自感系数。
This paper discussea a calculation method of equivalent self-inductance coefficient of two-dimension N×N non-mutual-inductance-coupling complex two-end self-inductance network,In the paper,Y△Transforms,series connection and parallel connection of resistance network introduced into the self-inductance network,and a new physical parameter reciprocal-of-self-inductance has been defined,on the basis of which,a complex self-inductance network could be simplified into a simple self-inductance network through a series of transforms,The paper takes the 2×2 self-inductance network as an example,its analytic solution of more complicated two-dimension M×N network can be got,thus the reciprocal-of-self-inductance coefficient is presented in order to spread this method.
出处
《平顶山工学院学报》
2005年第4期58-60,共3页
Journal of Pingdingshan Institute of Technology
基金
江南大学211工程科研项目(0002246)资助课题
关键词
复杂二端自感网络
等效自感系数
感导
complex two-end self-inductance network
equivalent self-inductance coefficient
reciprocal-of-self-inductance