期刊文献+

Transition State Theory Rate in Nonlinear Environment: the Under-damping Case

Transition State Theory Rate in Nonlinear Environment: the Under-damping Case
下载PDF
导出
摘要 We investigate the escape behavior of systems governed by the one-dimensional nonlinear Kramers' equation δW/δt = -vδW/δx + (f'(x)/m)(δW/δv) + γδ(vW)/δv + (γκBT/m)(δ2W^μ/δv^2), where f(x) is a metastable potential and μ an anomalous exponent. We obtain an expression for the transition state theory escape rate, whose predictions are in good agreement with numerical simulations. The results exhibit the anomalies due to the nonlinearity in W that the TST rate grows with T and drops as μbecomes large at a fixed T. Indeed, particles in the subdiffusive media (μ 〉 1) can escape over the barrier only when T is above a critical value, while there does not exist this confinement in the superdiffusive media (μ 〈 1).
机构地区 Physics Department
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第4X期752-756,共5页 理论物理通讯(英文版)
基金 国家自然科学基金
关键词 Kramers' escape rate nonlinear Fokker-Planck equation anomalous diffusion 非线性Fokker-Planck方程 反常扩散 Kramers方程 数字模拟
  • 相关文献

参考文献26

  • 1H.A. Kramers, Physica (Utrecht) 7 (1940) 284. 被引量:1
  • 2P. Hannggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys.62 (1990) 251. 被引量:1
  • 3M. Muskat, The Flow of Homogeneous Fluids Through Porous Media, McGraw-Hill, New York (1937). 被引量:1
  • 4P.Y. Ploubarinova-Kochina, Theory of Ground Water Movement, Princeton University Press, Princeton (1962). 被引量:1
  • 5J. Buckmaster, J. Fluid Mach. 81 (1977) 735. 被引量:1
  • 6E.W. Larsen and G.C. Pomraning, SIAM (Soc. Ind. Appl.Math.) J. Appl. Math. 39 (1980) 201. 被引量:1
  • 7H. Spohn, J. Phys. I 3 (1993) 69. 被引量:1
  • 8P. Rosenau, Phys. Rev. Lett. 74 (1995) 1056. 被引量:1
  • 9A. Compte,D. Jou, and Y. Katayama, J. Phys. A 30 (1997) 1023. 被引量:1
  • 10L. Borland, Phys. Rev. E 57 (1998) 6634. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部