摘要
本文提出了一种一维抛物型偏微分方程及其边界条件中定常参数的辨识方法.这一方法将所研究的偏微分方程初一边值问题转化为具有已知初值的常微分方程组问题,然后再利用最优化方法将参数估算出来.数值仿真与实验验证都表明这一辨识方法是可行的.
This paper presents a method which can simultaneously identify constant parameters in one-dimensional parabolic partial differential equation and its boundary conditions. Here the initial-boundary value problem of partial differential equation is reduced into a set of ordinary differential equations with known initial conditions. Then optimization approaches can be used to evaluate the parameters. Both the numerical example and the physical experiment show the applicability of this identification method.
出处
《自动化学报》
EI
CSCD
北大核心
1989年第2期156-160,共5页
Acta Automatica Sinica
关键词
分布参数系统
GALERKIN法
系统辨识
Distributed parameter systems
System identification
Ritz-Galerkin method