期刊文献+

A numerical method for multiple cracks in an infinite elastic plate 被引量:1

A numerical method for multiple cracks in an infinite elastic plate
下载PDF
导出
摘要 This article examines the interaction of multiple cracks in an infinite plate by using a numerical method. The numerical method consists of the non-singular displacement discontinuity element presented by Crouch and Startled and the crack tip displacement discontinuity elements proposed by the author. In the numerical method implementation, the left or the right crack tip element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. The numerical method is called a hybrid displacement discontinuity method. The following test examples of crack problems in an infinite plate under tension are included: “ center-inclined cracked plate”, “interaction of two collinear cracks with equal length”, “interaction of three collinear cracks with equal length”, “interaction of two parallel cracks with equal length”, and “interaction of one horizontal crack and one inclined crack”. The present numerical results show that the numerical method is simple yet very accurate for analyzing the interaction of multiple cracks in an infinite plate. This article examines the interaction of multiple cracks in an infinite plate by using a numerical method. The numerical method consists of the non-singular displacement discontinuity element presented by Crouch and Starfied and the crack tip displacement discontinuity elements proposed by the author. In the numerical method implementation, the left or the right crack tip element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. The numerical method is called a hybrid displacement discontinuity method. The following test examples of crack problems in an infinite plate under tension are included: “ center-inclined cracked plate”, “interaction of two collinear cracks with equal length”, “interaction of three collinear cracks with equal length”, “interaction of two parallel cracks with equal length”, and “interaction of one horizontal crack and one inclined crack”. The present numerical results show that the numerical method is simple yet very accurate for analyzing the interaction of multiple cracks in an infinite plate.
出处 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第4期351-357,共7页 哈尔滨工业大学学报(英文版)
基金 SponsoredbytheNationalNaturalScienceFoundationofChina(GrantNo.10272037)andtheNaturalScienceFoundationofHeilongjiang(GrantNo.A-02-05)
关键词 multiple cracks stress intensity factor boundary element method crack tip element displacement discontinuity method 多重裂纹 弹性金属板 压力强度因素 边界元素 复合材料
  • 相关文献

参考文献8

  • 1BLANDFORD G E,INGRAFFEA A R,LIGGETT J A.Two-dimensional stress intensity factor computations using the boundary element method[].International Journal for Numerical Methods in Engineering.1981 被引量:1
  • 2PORTELA A,ALIABAD IM H,ROOK D P.The dual boundary element method: Effective implementation for crack problems[].Int JNum Methods Eng.1992 被引量:1
  • 3CRUSE T A.Two-dimensional B IE fracture mechanics analysis[].ApplMathModelling.1978 被引量:1
  • 4M I Y,ALIABAD IM H.Dual-boundary elementmethod for three-dimensional fracture mechanics analysis[].Eng Ana with Boundary E lements.1992 被引量:1
  • 5CHEN Y Z.Stress intensity factors for curved and kinked cracks in plane extension[].Theoretical and Applied FractureMechanics.1999 被引量:1
  • 6TANAKA M,ITOH H.New crack elements for boundary element analysis of elastostatics considering arbitrary stress singularities[].Applied Mathematical Modelling.1987 被引量:1
  • 7ALIABAD IM H.Boundary element formulation in fracture mechanics[].Journal of Applied Mathematics.1997 被引量:1
  • 8YAN X.A crack tip displacement discontinuity element[].Mechanics Research Communications.2004 被引量:1

同被引文献8

  • 1于慧臣,孙燕国,张岩基,谢世殊,田中启介.不锈钢在扭转/拉伸复合载荷下近门槛值的疲劳裂纹扩展行为[J].金属学报,2006,42(2):186-190. 被引量:11
  • 2KITAGAWA H,YUUKI R,TOHGO K.Fatigue crack growth behavior from mixed-mode crack with K Ⅰ and K Ⅱ[J].Transactions of the Japan Society of Mechanical Engineers,1981,A47(424):1283-1292. 被引量:1
  • 3JONO M,SONG J H.Fracture Crack (Crack Closure and Predictions of Crack Growth Rate)[M].Osaka University Press,2005:27-51. 被引量:1
  • 4SURESH S.Fatigue crack deflection and fracture surface contact:micromechanical models[J].Metallurgical Transactions,1985,A16:249-260. 被引量:1
  • 5HALLIDAY M D,BEEVERS C J.Some aspects of fatigue crack closure in two contrasting titanium alloys[J].Journal of Testing and Evaluation,1981,9(4):195 -201. 被引量:1
  • 6SURESH S,RICHIE R O.A geometric model for fatigue crack closure induced by fracture surface roughness[J].Metallurgical Transactions,1982,A13:1627-1631. 被引量:1
  • 7MA Y L.Study on Fatigue crack Propagation Behavior under Mixed -Mode conditions with Compressive Residual Stress[D].Tokyo:Okayama University,2006. 被引量:1
  • 8OKAMURA H.Linear Fracture Mechanics[M].Tokyo:Baihuu -kan,2002:15-25. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部