期刊文献+

一种新的基于特征点的立体匹配算法 被引量:7

A New Feature-point-based Stereo Matching Algorithm
下载PDF
导出
摘要 目前,立体匹配是计算机视觉领域中最活跃的研究主题之一。为了快速并更精确的对特征点进行立体匹配,本文提出了一种新的基于特征点的立体匹配算法。该方法独立于特征点的检测算法,先以扫描线作为匹配单元,然后以鲁棒函数为匹配代价函数,最后用顺序约束对每一匹配单元的视差图进行检测与校正。实验证明,该方法的匹配精度高于传统的基于NCC(norm alized cross-correlation)的立体匹配算法,并且运行时间快,可以应用于纯软件的基于特征点的立体视觉系统中。 Stereo matching is currently one of the most active research topics in domain of computer vision. A new featurepoint-based stereo matching algorithm is proposed in this paper, in order to match feature points more efficiently and accurately. It is independent of feature detection algorithms, using the scan line as the matching unit, using the robust function as the matching cost function and using the ordering constraint to detect and correct errors in each matching unit in the disparity map. Experiments show that the matching accuracy of this algorithm is better than the traditional NCC (normalized cross-correlation) based stereo matching algorithm and the running time is quite fast. So, it can be used in the independent hardware feature-point-based stereo vision system.
出处 《中国图象图形学报》 CSCD 北大核心 2005年第11期1411-1414,共4页 Journal of Image and Graphics
关键词 立体匹配 鲁棒函数 特征点 顺序约束 stereo matching, robust function, feature point, ordering constraint
  • 相关文献

参考文献5

  • 1Scharstein D, Szeliski R. A taxonomy and evaluation of dense twoframe Stereo correspondence algorithms [ J ]. International Journal of Computer Vision, 2002, 47(1/2/3) :7 ~42. 被引量:1
  • 2Pollard S B, Mayhew J E, Frisby G P. PMF: A stereo correspondence algorithm using a disparity gradient limit [ J ].Perception,1985, 14(4) :449 ~470. 被引量:1
  • 3Smith Stephen M, Brady J M. SUSAN-A new approach to low level image processing [ J ]. International Journal of Computer Vision,1997, 23(1) :45 ~78. 被引量:1
  • 4Black M J, Anandan P. A framework for the robust estimation of optical flow [ A ]. In: IEEE International Conference on Computer Vision [ C ]. Berlin, Germany, 1993:231 ~ 236. 被引量:1
  • 5贾波,章毓晋,林行刚.视差图误差检测与校正的通用快速算法[J].清华大学学报(自然科学版),2000,40(1):28-31. 被引量:4

二级参考文献1

共引文献3

同被引文献35

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部