期刊文献+

应用神经网络方法建立单井物性解释模型

Establish Single Well Interpretation Models by the Application of Neural Network Technology
下载PDF
导出
摘要 濮城油田南区沙二上2+3油藏,储层物性复杂,常规解释模型精度低,难以用于本区单井物性解释。采用神经网络(BP)方法按物性的自然分区特征建立了解释模型,进行分段解释。物性分段解释的孔隙度、渗透率误差比笼统解释的明显减小,为寻找剩余油提供有利的地质依据。 The ( 2+3) reservoir of upper S2 in Pucheng oilfield has complicated properties, the conventional interpretation models of low accuracy can hardly be used to the interpretation of the properties of wells in this area. Therefore, interpretation models have been built using neural network technology according to the naturally divisional characteristics of the reservoir to interpret section by section. By preprocessing well log data and interpreting properties, error of porosities and permeabilities interpreted section by section is obviously cut down compared with that by general interpretations, which provides a favorable condition for geological modeling and seeking for the residual oil.
出处 《断块油气田》 CAS 2005年第5期47-48,共2页 Fault-Block Oil & Gas Field
关键词 神经网络 储层物性 解释模型 孔隙度 渗透率 误差 神经网络方法 储层物性 解释模型 单井 应用 濮城油田 模型精度 分区特征 地质依据 Neural network, Reservoir properties, Interpretation model, Porosity, Permeability, Error.
  • 相关文献

参考文献2

  • 1闻新.Matlab神经网络应用设计[M].北京:科学出版社,2001.. 被引量:84
  • 2胡守仁, 余少波, 戴葵..神经网络导论[M],1993.

共引文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部