摘要
It is the first time so far as we know that two arrays of multi-channel soft x-ray detectors are used to generate twodimensional (2D) images of sawtooth oscillation on the HT-7 tokamak using the Fourier-Bessel harmonic reconstruction method, and using the singular value decomposition to analyse the data from soft x-ray cameras. By these two arrays, 2D image reconstruction of soft x-ray emissivity can be obtained without assumption of plasma rigid rotation. Tomographic reconstruction of the m=1 mode structure is obtained during the precursor oscillation of the sawtooth crash. The crescent-shaped mode structure appearing on the contour map of the soft x-ray emissivity is consistent with the quasiinterchange mode. The characteristics of the m=1/n=1 mode structure observed in the soft x-ray tomography are as follows: the magnetic surface is made up of the crescent-shaped “hot core” and the circular “cold bubble”. The structure of the magnetic surface rotates in the direction of the electron diamagnetic drift and the rotation frequency is the oscillation frequency of soft x-ray signals.
It is the first time so far as we know that two arrays of multi-channel soft x-ray detectors are used to generate twodimensional (2D) images of sawtooth oscillation on the HT-7 tokamak using the Fourier-Bessel harmonic reconstruction method, and using the singular value decomposition to analyse the data from soft x-ray cameras. By these two arrays, 2D image reconstruction of soft x-ray emissivity can be obtained without assumption of plasma rigid rotation. Tomographic reconstruction of the m=1 mode structure is obtained during the precursor oscillation of the sawtooth crash. The crescent-shaped mode structure appearing on the contour map of the soft x-ray emissivity is consistent with the quasiinterchange mode. The characteristics of the m=1/n=1 mode structure observed in the soft x-ray tomography are as follows: the magnetic surface is made up of the crescent-shaped “hot core” and the circular “cold bubble”. The structure of the magnetic surface rotates in the direction of the electron diamagnetic drift and the rotation frequency is the oscillation frequency of soft x-ray signals.
基金
Project supported by the National Natural Science Foundation of China (Grant Nos 10375070 and 10305012).