期刊文献+

基于支持向量机的DNA序列分类系统的设计与实现 被引量:8

Design and realization of a DNA sequence classification system based on support vector machines
下载PDF
导出
摘要 针对传统统计方法进行DNA序列分类时要求DNA序列样本的概率分布函数已知,但多数情况下概率分布函数未知这一问题,采用支持向量机这一新的机器学习方法对DNA序列进行分类;以VB和Matlab为主要工具开发了基于支持向量机的DNA序列分类系统。结果表明:该系统能够动态选择DNA训练样本、待测试样本,以及支持向量机模型中的参数,并根据用户的指定条件动态输出计算结果;对于预测一批已知正确分类答案的DNA序列,系统能够自动统计识别率,以观察参数变化对于算法执行结果的影响。 The distribution of DNA sequence samples must be known when classifying by the traditional statistical methods, unfortunately, it is unknown in most application cases. This paper mainly developed a DNA sequence classification system based on support vector machines (SVM) by VB and Matlab and proposed an new approach to express the DNA sequence data. The test results showed that the system had the merits of dynamically selecting DNA training samples and the samples to be tested, as well as supporting the parameters in SVM model. The system can also dynamically output the calculating results on demand of users, automatically make a statistics of reorganization rate to investigate the effects of parameters variations on the the computing results for a prediction process of a set of correctly classified DNA sequences.
出处 《中国农业大学学报》 CAS CSCD 北大核心 2005年第2期58-64,共7页 Journal of China Agricultural University
基金 国家自然科学基金资助项目 (10 371131)
关键词 DNA序列分类 支持向量机 动态化输入 动态化输出 DNA sequence classification support vector machines dynamic input dynamic output
  • 相关文献

参考文献16

  • 1VapnikV 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000.. 被引量:61
  • 2Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel based learning methods[M]. Cambridge :Cambridge University Press, 2000.1-161. 被引量:1
  • 3阎辉,张学工,李衍达.基于核函数的最大间隔聚类算法[J].清华大学学报(自然科学版),2002,42(1):132-134. 被引量:8
  • 4Braddley P S, Mangasarian O L. Massive data discrimination via linear support vector machines[J]. Optimization Method and Software, 2000, 13(1):1-10. 被引量:1
  • 5Burges C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2):121-167. 被引量:1
  • 6Hua Sunjun, Sun Zhirong. Support vector machine approach for protein subcellular location prediction[J]. Bioinformatics, 2001,8(17):721-728. 被引量:1
  • 7Emanuelsson O, Nielsen H, Brunak S. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence[J]. MolBiol, 2000,300(1):1005-1016. 被引量:1
  • 8Nakai K. Protein sorting signals and prediction of subcellular localization[J]. Adv Protein Chem, 2000,54(1):277-344. 被引量:1
  • 9邓乃扬,田英杰著..数据挖掘中的新方法 支持向量机[M].北京:科学出版社,2004:408.
  • 10边肇祺等编著..模式识别 第2版[M].北京:清华大学出版社,2000:338.

二级参考文献5

  • 1[1]Vapnik V N.The Nature of Statistical Learning Theory [M].NY: Springer- Verlag,1995. 被引量:1
  • 2[2]Bennett K P,Mangasarian O L.Robust linear programming disc rimination of two linearly inseparable sets [J].Optim Methods and Software,1 992,1: 23-34. 被引量:1
  • 3[3]Kristin P Bennett,Ayhan Demiriz.Semi-Supervised Support Vector Machines [A].Proc of Neural Info Processing Systems [C].Denver,199 8. 被引量:1
  • 4[4]Scholkopf B,Smola A.Kernel principal component analysis [A],ICANN97,Springers Lecture Notes in Computer Sci [C].USA,1997.583-588. 被引量:1
  • 5[5]Scholkopf B,Platt J.Estimating the support of a high-dimensional distri bution [J].Neural Computation,2001,13(7): 1443-1472. 被引量:1

共引文献67

同被引文献67

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部