摘要
基于交替方向隐式(ADI)技术的时域有限差分法(FDTD)是一种非条件稳定的计算方法,该方法的时间步长不受Courant稳定条件限制,而是由数值色散误差决定。与传统的FDTD相比,ADI-FDTD增大了时间步长,从而缩短了总的计算时间。该文采用递归卷积(RC)方法导出了二维情况下色散媒质中ADI-FDTD的完全匹配层(PML) 公式。应用推导公式计算了色散土壤中目标的散射,并与色散媒质中FDTD结果对比,在大量减少计算时间的情况下,两者结果符合较好。
Alternating Direction Implicit-Finite Difference Time Domain(ADI-FDTD) is unconditionally stable and the maximum time step size is not limited by the Courant stability condition, but rather by numerical error. Compared with the conventional FDTD method, the time step size of ADI-FDTD can be enlarged arbitrarily. In this paper 2D PML implementation is proposed for ADI-FDTD in dispersive media using recursive convolution method. ADI-FDTD formulations for dispersive media can be derived from the simplified Perfectly Matched Layer (PML). Numerical results of ADI-FDTD with PML for dispersive media are compared with FDTD. Good agreement is observed.
出处
《电子与信息学报》
EI
CSCD
北大核心
2005年第10期1677-1680,共4页
Journal of Electronics & Information Technology
关键词
时域有限差分法
交替方向隐式技术
完全匹配层
色散媒质
Finite Difference Time Domain(FDTD), Altemating-Direction Implicit(ADI), Perfectly Matched Layer(PML),Dispersive media