摘要
在非线性分析中,处理伪紧缩算子及其变形的解(不动点)存在性和近似性,从而使演化方程的求解已经发展成为一个独立的理论.使用近似不动点技术,采用摄动迭代方法,目的是证明利普希茨伪紧缩映射序列的收敛性.该迭代方法适用于比利普希茨伪紧缩算子更一般的非线性算子以及Bruck迭代法无法证明其收敛性的情况.推广了Chidume和Zegeye的结果.
The solution to evolution equations has developed an independent theory within nonlinear analysis dealing with the existence and approximation of such solution(fixed point) of pseudocontractive operators and its variants. The object is to introduce a perturbed iteration method for proving the convergence of sequence of Lipschitzian pseudocontractive mapping using approximate fixed point technique. This iteration can be ued for nonlinear operators which are more general than Lipschitzian pseudocontractive operator and Bruck iteration fails for proving their convergence. Our results generalize the results of Chidume and Zegeye.
出处
《应用数学和力学》
CSCD
北大核心
2005年第11期1293-1300,共8页
Applied Mathematics and Mechanics