期刊文献+

一种新的Bayes网络条件概率学习方法 被引量:1

A New Approach to Learning Conditional Probabilities in Bayesian Networks
下载PDF
导出
摘要 针对大规模Bayes网络的条件概率赋值问题,提出一种学习方法.首先使用类层次结构定义一种新的基于层次的Bayes网络模型,用于表示大规模Bayes网络.然后将训练数据集由单个数据表的形式转化成多表数据库,其中每个数据库表对应一个Bayes网络模块.在此基础上导出条件概率计算公式,从每个数据库表中算出相应的Bayes网络模块的条件概率表,由此实现对整个层次Bayes网络的概率赋值.通过适当增加数据库表的数目来控制每个表中属性的个数,保证计算的可行性.将层次Bayes网络及计算公式用于解决图像中文本的自动检测与定位问题,实验结果表明了它们的有效性. A learning approach is proposed to assignation in large scale Bayesian networks. model is defined based on class hierarchical solve the problems of conditional probability Firstly, a new hierarchical Bayesian Network structure, which is used to represent large scale Bayesian networks. Then, the train data set is changed from a single table to a database composed of some database tables. And each database table corresponds to a Bayesian network block. Based on that, a formula of conditional probability is developed. And each conditional probabilistic table of Bayesian network block can be calculated from the database tables respectively. Proper adjustment of the attribute number in each database table can assure the validity of this learning approach. Experiments in automatic detection and location of texts in images show the feasibility of this hierarchical Bayesian network and learning approach.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2005年第5期701-710,共10页 JUSTC
基金 国家自然科学基金(60175011 60375011) 安徽省自然科学基金(03042207) 安徽省优秀青年科技基金(04042044)
关键词 BAYES网络 类层次结构 层次Bayes网络 机器学习 文本检测 Bayesian networks class hierarchical structure hierarchical Bayesian network machine learning text detections
  • 相关文献

参考文献20

  • 1Pearl J. Probabilistic Reasoning in Expert Systems: Networks of Plausible Inference[M]. San Mateo: Morgan Kaufmann, CA,1988. 被引量:1
  • 2Jensen F V. Bayesian Networks and Decision Graphs [M]. New York: Springer-Verlag,2001. 被引量:1
  • 3汪荣贵,张佑生,高隽,彭青松.基于Bayes网络的航空图象理解模型[J].中国科学技术大学学报,2004,34(6):745-756. 被引量:3
  • 4Buntine W. A guide to the literature on learning probabilistic networks from data[J].IEEE Trans. Knowledge Data Engrg. 1996,8(2), 195-210. 被引量:1
  • 5Heckerman D, Geiger D, Chickering D.Learning Bayesian networks: the combination of knowledge and statistical data[J].Machine Learning. 1995,20(3):197-243. 被引量:1
  • 6Neapolitan R E. Learning Bayesian Networks[M]. NJ. :Prentice Hall Upper SaddleRiver, 2003. 被引量:1
  • 7汪荣贵,张佑生,彭青松.分组样本下Bayes网络条件概率的学习算法[J].小型微型计算机系统,2002,23(6):687-689. 被引量:8
  • 8姚宏亮 王浩 胡学刚 汪荣贵.基于遗传算法和MDL原则的Bayes网络结构优化算法[J].南京大学学报:自然科学版,2002,:23-23. 被引量:2
  • 9Chickering D M, Geiger D, Heckerman D E.Learning Bayesian networks is NP-Hard[R].Microsoft Research Technical Report MSRTR-94-17. 1994. 被引量:1
  • 10Geiger D, et al. Knowledge representation and inference in similarity networks and Bayesian multi-nets[J].Artificial Intelligence, 1996,82:45-74. 被引量:1

二级参考文献26

  • 1李庆扬 王能超 等.数值分析(第3版)[M].武汉:华中理工大学出版社,1986.138-139. 被引量:9
  • 2Castleman Kenneth R 朱志刚(译).数字图像处理[M].北京:电子工业出版社,1998.. 被引量:5
  • 3KennethRCastleman 朱志刚 译.数字图像处理[M].北京:电子工业出版社,1998.. 被引量:28
  • 4Crevier D,Lepage R. Knowledge-based image understanding systems: A survey[J]. Computer Vision and Image Understanding,1997,67(2): 161-185. 被引量:1
  • 5Pearl J. Probabilistic Reasoning in Intelligence systems: Networks of Plausible Inference [ M]. San Mateo, California: Morgan Kaufmann, 1988. 被引量:1
  • 6Binford T O,Levitt T S,et al. Bayesian inference in model-based machine vision[A]. Pearl J. Proceeding of Uncertainty in Artificial Intelligence[C]. North-Holland : Elsevier, 1989,371-388. 被引量:1
  • 7Riemy R,Brown C. Task-oriented vision with multiple bayes nets. in: Blake A. Active Vision[M]. The MIT press, 1992,256-283. 被引量:1
  • 8HUANG T,Koller D,et al. Automatic symbolic traffic scene analysis using belief networks[A]. S. Russel. Proc. of the 12th National Conference on Artificial Intelligence[C].Seattle, WA: Elsevier, 1994,966-972. 被引量:1
  • 9Buxton H,GONG S. Visual surveillance in a dynamic and uncertain world [J]. Artificial Intelligence, 1995,78: 431-459. 被引量:1
  • 10Dockstader S L,Tekalp A M. Tracking multiple objects in the presence of articulated and occluded motion[A]. P. Eren. Proc. of the Workshop on Human Motion[C]. Austin:IEEE Computer Society,2000,88-95. 被引量:1

共引文献27

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部