期刊文献+

中文名实体识别中的特征组合与特征融合的比较 被引量:7

Comparing features combination with features fusion in Chinese named entity recognition
下载PDF
导出
摘要 先分析了最大熵模型常用的特征线性组合方法中的权值偏置问题,然后提出了在线性组合之前,对特征进行融合,并根据融合特征和目标类别之间的互信息选择有效复合特征的方法。通过在包含2000个人名的语料库上的测试,表明特征融合能有效地提高名实体识别的精度和召回率。 Maximum entropy model is usually used for named entity recognition, in which the features related to a random event are linearly combined. The problem of the weight bias in the features combination was pointed out, and a strategy of performing features fusion before linearly combining was proposed. The result of experiment on corpus containing 2000 human names shows that features fusion can improve the precision and recall of named entity recognition effectively.
出处 《计算机应用》 CSCD 北大核心 2005年第11期2647-2649,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(60435020) 国家863计划项目(2002AA117010-09)
关键词 名实体识别 特征组合 权值偏置 特征融合 最大熵模型 named entity recognition( NER) features combination weight bias fcatures fusion maximum entropy model
  • 相关文献

参考文献12

  • 1CHINCHOR N. MUC-7 Named Entity Task Definition [A]. Proceedings of The Seventh Message Understanding Conference [C], 1998. 被引量:1
  • 2谭红叶,郑家恒,刘开瑛.基于变换的中国地名自动识别研究(英文)[J].软件学报,2001,12(11):1608-1613. 被引量:23
  • 3李建华,王晓龙.中文人名自动识别的一种有效方法[J].高技术通讯,2000,10(2):46-49. 被引量:10
  • 4YE S. An Agent-based Approach to Chinese Named Entity Recognition [A]. COLING 2002 [C]. Taipei, Taiwan, 2002. 被引量:1
  • 5SUN J, GAO J, ZHANG L, et al. Chinese Named Entity Identification Using Class-based Language Model [A]. COLING 2002 [C]. Taipei, Taiwan,2002. 被引量:1
  • 6JAYNES ET. Information Theory and Statistical Mechanics [J]. Physics Reviews, 1957, 106: 620-630. 被引量:1
  • 7BERGER AL, DELLA PIETRA SA, DELLA PIETRA VJ. A Maximum Entropy Approach to Natural Language Processing [J]. Computational Linguistics, 1996, 22(1): 39-72. 被引量:1
  • 8DELLA PIETRA S, DELLA PEITRA V, MERCER R, et al. Adaptive Language Modeling Using Minimum Discriminate Estimation [A]. Proceedings of the International Conference on Acoustics, Speech and Signal Processing [C]. San Francisco, 1992. 633-636. 被引量:1
  • 9NIGAM K, LAFFERTY J. Using Maximum Entropy for Text Classification [A]. Proceedings of the IJCAI-99 Workshop on Information Filtering [C]. Stockholm, 1999. 被引量:1
  • 10RATNAPARKHI A. A Maximum Entropy Model for Part-of-speech Tagging [A]. Proceedings of conference on empirical method in natural language processing [C]. Pennsylvania, 1996. 被引量:1

二级参考文献4

共引文献29

同被引文献56

引证文献7

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部