期刊文献+

基于广义多分辨似然比的SAR图像无监督分割方法 被引量:1

A New Algorithm for Improving Unsupervised Segmentation of SAR Imagery
下载PDF
导出
摘要 首先在多分辨四叉树上定义了一个广义多分辨似然比,刻画并且累积了SAR(syntheticaperture radar)图像中目标与背景在不同分辨率上的差异,从而增大了目标与背景之间的区分度。为了达到图像无监督分割目的,提出一个有效的空间变化混合多尺度自回归(spatially variantm ixture m u ltiscale autoregressive简称SVMMAR)模型方法,利用该模型分别估计出每个分辨率上广义多分辨似然比中一组密度函数的参数。为了考虑被分类象素与周围象素之间的M arkov性,减弱对噪声的敏感性,利用开窗技术来确定中心象素点的类别。实验中与通常的分割技术作了比较,也表明该方法不论从分割的精度,对噪声的敏感度,还是从边缘的光滑度都表明该方法具有较强优势。 In the full paper we begin with a somewhat detailed analysis of the shortcomings of existing algorithms for segmentation of synthetic aperture radar (SAR) imagery. We aim at ameliorating some of these shortcomings with a mathematically more efficient new algorithm. We define a generalized multiresolution likelihood ratio (GMLR) which generalizes the classic likelihood ratio, and which, after identifying the difference between background and target for each of the multiresolutions of SAR imagery, sums up all the differences. So the GMLR increases the distinction between background and target. In order to get unsupervised segmentation, an efficient spatially variant mixture multiscale autoregressive (SVMMAR) model is proposed and applied to estimating the parameters of the GMLR easily. Then, we classify each individual pixel based on a test window. Finally, we give experimental results, which show preliminarily that our method improves unsupervised segmentation of SAR imagery in three aspects: (1) it segments the background and targets precisely; (2) it gets clear and smooth edges between background and targets; (3) it is not sensitive to speckle noise.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2005年第5期666-670,共5页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(60375003) 航空基础科学基金(03I53059)资助
关键词 广义多分辨似然比 空间变化混合多尺度自回归模型 无监督分割 generalized multiresolution likelihood ratio (GMLR), spatially variant mixture multiscale autoregressive (SVMMAR) model, unsupervised segmentation
  • 相关文献

参考文献6

  • 1Marroquin J, Mitter S K, Poggio T. Probabilistic Solution of Ill-Posed Problems in Computational Vision. J Amer Stat Assoc, 1987, 82 (3):76~89. 被引量:1
  • 2Comer M L, Delp E J. Segmentation of Textured Images Using a Multiresolution Gaussian Autoregressive Model.IEEE Trans on Image Processing, 1999, 8 (3):408~420. 被引量:1
  • 3Fosgate H, Krim H, et al. Multiscale Segmentation and Anomaly Enhancement of SAR Imagery. IEEE Trans on Image Processing, 1997, 6(1):7~20. 被引量:1
  • 4Kim Andrew, Krim Hamid. Hierarchical Stochastic Modeling of SAR Imagery for Segmentation/Compression. IEEE Trans on Signal Processing, 1999, 47(2):458~468. 被引量:1
  • 5Van Tree, Harry L. Detection, Estimation, and Modulation Theory. Beijing:Publishing House of Electronics Industry,2003. 被引量:1
  • 6Gopal S S, Herbert T J. Bayesian Pixel Classification Using Spatially Variant Finite Mixtures and the Generalized EM Algorithm. IEEE Trans on Image Processing, 1998, 7 (7):1014~1018. 被引量:1

同被引文献12

  • 1陈卫荣,王超,张红.基于特征融合的高分辨率SAR图像道路提取[J].遥感技术与应用,2005,20(1):137-140. 被引量:6
  • 2胡正磊,孙进平,袁运能,毛士艺.基于小波边缘提取和脊线跟踪技术的SAR图像河流检测算法[J].电子与信息学报,2007,29(3):524-527. 被引量:16
  • 3Soh L K,Tsatsoulis C.Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices [J].IEEE Transaction on Geoscience and Remote Sensing,1999,37(2):780-784. 被引量:1
  • 4Kandaswamy U,Adjeroh D A,Lee M C.Efficient texture analysis of SAR imagery [J].IEEE Transaction on Geoscience and Remote Sensing,2005,43(9):2075-2083. 被引量:1
  • 5Solberg A H S,Jain A K.A study of the invariance properties of textural features in SAR images[C].Geoscience and Remote Sensing Symposium, 1995,1 (1):670-672. 被引量:1
  • 6Clausi D A,Yue B.Comparing co-occurrence probabilities and Markov random fields for texture analysis of SAR ice imagery[J]. IEEE Transaction on Geoscience and Remote Sensing,2004,42(1): 215-228. 被引量:1
  • 7Bruno Aiazzi,Luciano Alparone,Stefano Baronti and Andrea Garzelli. Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolutian analysis[J]. IEEE Transactions on Geosince and Remote Sensing,2002 (40): 2300 ~ 2312. 被引量:1
  • 8Andrea Baraldi, Flavio Parmiggiani. An Investigation of the Textural Characteristies Associated with Gray Level Cooeeurrenee Matrix Statistical Parameters [J]. IEEE Transaetionson Geoseienee and Remote Sensing,1999,33(1):293-304. 被引量:1
  • 9王文波,孙琳,羿旭明,费浦生.SAR图像中河流边缘检测的Wavelet snake算法[J].工程数学学报,2007,24(6):1075-1079. 被引量:5
  • 10贾承丽,赵凌君,吴其昌,匡纲要.基于遗传算法的SAR图像自动道路提取[J].中国图象图形学报,2008,13(6):1134-1142. 被引量:14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部