摘要
本文主要讨论了Hilbert空间上带不等式约束的非凸规划的解与Lagrange式鞍点之间的关系.利用闭包函数作为工具,在此条件,存在(x_0,μ_0)conv(epif))且在x_0∈domf条件下,证明了Lagrange式存在鞍点是该非凸规划有解的必要条件.
In this paper,the relationship between the solution of nonconvex programming with inequality constraints on Hilbert space and the saddle point of Lagrange function are discussed.Under this condition,there exists(x_0,u_0)
conv(epif),and x_b∈domf,it is proved that the existence of saddle point inLagrange function is the necessary condition for the existence of solution in nonconvex programming。
关键词
拉格朗日
鞍点
泛函分析
Lagrange functon
saddle point
closure function
proper function
Hilbert space
inequality constraints