期刊文献+

一种基于MCMC稳态模拟的贝叶斯索赔校正模型 被引量:4

A Bayesian Emendation Model for Claim Frequency Based on MCMC Method
原文传递
导出
摘要 Bhlmann模型是贝叶斯方法在经验费率厘定中最为著名的应用,然而该模型在结构参数先验信息不足的情况下,并不能得出参数的无偏后验估计。本文针对传统方法的不足,运用基于MCMC模拟的贝叶斯方法对历史数据进行校正,通过Gibbs抽样构造出一种多层Poisson模型稳态分布的马尔可夫链,动态模拟出索赔频率的后验分布以及缺失参数值的后验估计,改进了传统的索赔校正模型,提高了计算的精度。利用WinBUGS软件包进行建模分析,证明了该模型的直观性与有效性。 Bühlmann model is the most famous application of the Bayesian method for the experience rate making. However, by this model one cannot get the unbiased posterior estimation of the parameters when there is not sufficient prior information for the structural parameters. Aimed at the fault of the traditional methods, this paper discusses how to conduct a Markov Chain for a hierarchical Poisson model with Gibbs sampling by applying Bayesian approach to revise the his tory data and get the posterior distribrtions of the claim frequency as well as the posterior estimation of the censoring parameters dynamically, as well as improve the precision of the numeration. Also this paper utilizes the WinBUGS package, which is based on the MCMC method, to prove the objebtivity and validity of the model.
出处 《数量经济技术经济研究》 CSSCI 北大核心 2005年第10期92-99,共8页 Journal of Quantitative & Technological Economics
基金 中国博士后科学基金项目(20040350216) 国家社科基金项目(04CTJ003)。
关键词 贝叶斯分析 经验费率 索赔频率 MCMC模拟 GIBBS抽样 Bayesian Analysis Experience Rating Claim Frequency MC- MC Simulation Gibbs Sampling
  • 相关文献

参考文献12

  • 1曾庆五, 陈迪红, 黄大庆..保险精算技术[M],2002.
  • 2刘乐平,袁卫.现代Bayes方法在精算学中的应用及展望[J].统计研究,2002,19(8):45-49. 被引量:15
  • 3Carlin, B. P. , State Space Modeling of Non-Standard Actuarial Time Series [J].Insurance:Mathematics and Economics. 1992, (11): 209-222. 被引量:1
  • 4David P. M. Scollnik, An Introduction to Markov Chain Monte Carlo Methods and Their Actuarial Applications[J]. Proceedings of the Casualty Actuarial Society, 1996, (83) : 114-165. 被引量:1
  • 5David P. M. Scollnik, Chl the Analysis of the Truncated Generalized Poisson Distribution Using a Bayesian Method [J]. ASTIN Bulletin, 1998. 28 (1): 135-152. 被引量:1
  • 6David P. M. Scollnik, The Bayesian Analysis of Two Generalized Poisson Models for Claim Frequency Data Utilizing Markov Chain Monte Carlo Methods[J]. Actuarial Research Clearing House, 1995(1) : 339-256. 被引量:1
  • 7Makov, U. E. , A. F. M. Smith, Y- H Liu. , Bayesian Methods in Actuarial Science [J]. The Statistician. 1996, (45) : 503-515. 被引量:1
  • 8Pai, J. Bayesian Analysis of Compound Loss Distributions[J].Journal of Economics. 1997, (79) : 129-146. 被引量:1
  • 9李冬冬,方立勋.应用贝叶斯方法校正赔款频率[J].沈阳建筑工程学院学报,1998,14(1):88-91. 被引量:1
  • 10王春峰,万海辉,李刚.基于MCMC的金融市场风险VaR的估计[J].管理科学学报,2000,3(2):54-61. 被引量:50

二级参考文献19

  • 1SamuelKotz 吴喜之.现代贝叶斯统计学[M].北京:中国统计出版社,2000,10.. 被引量:2
  • 2Jamshudian F,Financial Products,1996年,50期,17页 被引量:1
  • 3贾乃光译.统计决策论及贝叶斯分析[M].中国统计出版社,1998.. 被引量:2
  • 4S.James Press,"Bayes statistics:Principles,Models,and Applications."John Wiley & Sons,1989.中译本廖文等译,贝叶斯统计学:原理、模型及应用.北京:中国统计出版社,1992. 被引量:1
  • 5Berger J. O., "Statistical Decision Theory and Bayesian Analysis" .2nd ed. New York: Springer-Verlage, 1985. 中译本:贾乃光译.统计决策论及贝叶斯分析.北京:中国统计出版社,1998. 被引量:1
  • 6Buhlmann, H. Experience Rating and Probability. ASTIN Bulletin, 1967,4:199-207.-Experience Rating and Probability. ASTIN Bulletin, 1969,5:157 ~ 65. 被引量:1
  • 7Berger, J. O. An Overview of Robust Bayesian Analysis (with discussion) .Test, 1994,3:5 ~ 124. 被引量:1
  • 8Dickson, D. C. M. L. M. Tedesco, and B. Zehnworth.. Preidictive Aggregate Claim Distribution. The Journal of Risk and Insurance, 1998,65:689 ~ 709. 被引量:1
  • 9Dellaportas, P., A. F. M. Smith, and P. Stavropoulos. Bayesian Analysis of Mortality Data. Journal of Royal Statistical Society (Series A) 164:275 ~ 91. 被引量:1
  • 10Herzog, T. N. Credibility: The Bayesian Model Versus Buhlmann Model. Transaction of Society of Actuaries 1990,41:43 ~ 88. 被引量:1

共引文献62

同被引文献30

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部