期刊文献+

湍流退化图像相位恢复算法研究 被引量:2

Restoration of turbulence-degraded images based on phase retrieval algorithm
下载PDF
导出
摘要 为克服气动光学效应对目标图像的影响,把相位恢复算法与气动光学效应机理研究结合起来,用于湍流退化图像的恢复。该算法是通过目标图像的傅里叶变换幅值来恢复目标图像,或等价地,恢复傅里叶变换相位。讨论了两类相位复原算法——迭代傅里叶变换(IFT)和解相关算法。对现有的解相关算法作了改进,采用共轭梯度法解高斯-牛顿方程,可有效提高算法的收敛速度。IFT算法不能保证迭代过程总能收敛到正确解,有时会出现停滞现象,将IFT和解相关算法组合起来,可以克服IFT算法的停滞现象,提高正确收敛率。给出了在信噪比为20 dB情况下的湍流退化仿真图像恢复的实例,目标图像能较清晰地恢复出来。实验结果表明该算法具有较好的稳定性和抗噪声能力。 To suppress the aero-optic effect on object images,the phase retrieval algorithm is applied together with aero-optic mechanism to restore turbulence-degraded images.The principle of this algorithm is to reconstruct object images from their Fourier transform magnitude and is equivalent to the principle of the reconstruction of the Fourier phase.Two methods for phase retrieval,namely the iterative Fourier transform (IFT) algorithm and a new de-autocorrelation algorithm, are discussed.The current de-autocor- relation algorithm is improved by using the conjugate gradient(CG)method to solve the Gauss-Newton equation in order to accelerate convergence.The reconstruction done by the IFT algorithm does not always converge to correct results,but combination of the IFT algorithm and the de-autocorrelation algorithm will reduce the stagnation of the IFT algorithm and increase the effectiveness of phase retrieval.Expermental examples of restoration of a simulated turbulence-degraded image with white noise at signal-to-noise ratio (SNR)of 20 dB are given. The experimental results show that the recommended method is an effective method and less sensitive to noise.
出处 《红外与激光工程》 EI CSCD 北大核心 2005年第5期597-601,共5页 Infrared and Laser Engineering
基金 国家自然科学基金重点项目(F60135020) 航天科技创新基金资助项目(2001042)
关键词 相位恢复 迭代傅里叶变换 解相关 图像恢复 湍流退化 Phase retrieval IFT De-autocorrelation Image restoration Turbulence-degraded
  • 相关文献

参考文献12

二级参考文献15

  • 1张天序,洪汉玉,孙向华,宋治.基于估计点扩展函数值的湍流退化图像复原(英文)[J].自动化学报,2003,29(4):573-581. 被引量:17
  • 2彭玉华.小波变换与工程应用[M].北京:科学出版社,2000.. 被引量:76
  • 3Banham M R, Galatsanos N P, Gonzalezh L, et al. Multichannel restoration of single channel images using a wavelet-based subband decomposition. IEEE Trans. Image Processing, 1994, 3(6): 821-833 被引量:1
  • 4Wang Ganfeng, Zhang Jun, Wen Guang. Solutoion of inverse problems in image processing by wavelet expansion. IEEE Trans. Image Processing, 1995, 4(5): 579-593 被引量:1
  • 5Frieden B R.An exact linear solution to the problem of imaging through turbulence[].Optics Communication.1998 被引量:1
  • 6Ayers G R,Dainty J C.Iterative blind deconvolution method and its applications[].Optics Letters.1988 被引量:1
  • 7Cao Zhi-Hao.Numerical Linear Algebra[]..1995 被引量:1
  • 8Nagy James G,Plemmons Robert J,Torgersen Todd C.Iterative image restoration using approximate inverse preconditioning[].IEEE Transactions on Image Processing.1996 被引量:1
  • 9Lam E Y,Goodman J W.Iterative statistical approach to blind image deconvolution[].Journal of the Optical Society of America A Optics Image Science and Vision.2000 被引量:1
  • 10Law N F,Lane R G.Blind deconvolution using least squares minimization[].Optics Communication.1996 被引量:1

共引文献47

同被引文献19

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部