期刊文献+

观测数据拟合分析中的多重共线性问题 被引量:21

Research on the Multicollinearity Existing in Observation Data Simulation and Analysis
下载PDF
导出
摘要 为有效克服在工程安全监测数据及统计数据的拟合与预测研究中,采用最小二乘回归法难以有效识别自变量因子间的多重共线性并消除其对回归模型精度影响的不足,引进偏最小二乘回归(PLSR)方法,对观测数据变量及其影响因子进行拟合与预测分析。将模型拟合预测与非模型式的数据内涵分析有机结合,可同时实现回归建模、数据结构简化以及因子间的多重共线性分析,并通过交叉有效性检验来控制模型精度。结果表明:PLSR方法对系统信息和噪声有良好的辨识能力,能有效克服因子多重共线性对模型精度的影响,使模型结果对实测变量的物理成因解释更趋合理,因而比最小二乘回归方法更具广泛适用性。 In order to overcome deficiencies in the simulation and forecast for engineering safety monitor and statistics data induced by the least-square method which cannot effectively identify the multicollinearity of independent variables and eliminate its effects on model precision, the partial least-squares regression (PLSR) method is advanced to analyze observation data and their influencing variables. The PLSR method is well integrated with non-model-style data connotation analyses, thus the regression modeling, data structure simplifing and the multicollinearity analyzing could be simultaneously carried out, and the model precision is controlled by the method of cross validation test. Model results show that the PLSR method has a wider applicability than the least-square regression method, for the former can satisfactorily identify system information or noise and effectively eliminate the multicollinearity effects on model accuracy of simulation and forecast, which makes the model tend to be more reasonable in physical genesis analyses on observation data.
作者 杨杰 吴中如
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2005年第5期19-24,共6页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金重点资助项目(50139030) 西安理工大学科学研究基金项目(106-210508)
关键词 多重共线性 偏最小二乘回归 最小二乘法 数据拟合与分析 multicollinearity partial least-square regression the least-square method data simulation and analysis
  • 相关文献

参考文献16

二级参考文献19

共引文献152

同被引文献253

引证文献21

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部