期刊文献+

一类种群增长模型的反馈线性化控制 被引量:8

Feedback-Linearized Control of a Class of Population Growth Models
下载PDF
导出
摘要 考虑一类带有时滞的种群增长模型的混沌控制问题.通过计算系统的Lyapunov指数和Lyapunov维数验证了一类带有时滞的种群增长模型具有混沌现象.运用反馈线性化方法,设计反馈控制器,对成虫进行捕获或投放,制定合理的开发策略,将系统中的混沌轨道稳定到理想的目标轨道,即不稳定的不动点,进而使不稳定的种群系统达到稳定.数值仿真说明该反馈控制器行之有效,可以使处于混沌状态的生物种群稳定到理想状态,实现种群的有序生存,保持自然界的生态平衡. Discusses the problem of the chaotic control of a class of population growth models with time lag. Computing the Lyapunov exponents and Lyapunov dimension of the system, the fact that there is a chaos phenomenon in the population growth models with time lag is verified. A feedback controller is designed to capture or release adult population by feedback linearization as to stabilize the chaotic orbits and enable them to be ideal target ones, i.e. , unstable fixed points of the chaotic system. The unstable population system will therefore become stable by a rational development policy. Numerical simulations indicate that this feedback controller is effective in practice. It will cause the biological population in chaos states to stabilize and come into an ideal state, thus realizing orderly existence with balance of nature maintained for long.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第10期926-929,共4页 Journal of Northeastern University(Natural Science)
基金 辽宁省普通高校学科带头人基金资助项目(124210)
关键词 LYAPUNOV指数 Lyapunov维数 混沌控制 反馈线性化 不动点 Lyapunov exponent Lyapunov dimension chaos control feedback linearization fixed point
  • 相关文献

参考文献9

  • 1Smith M J. Mathematical ideas in biology[M]. Cambridge: Cambridge University Press, 1968.35-47. 被引量:1
  • 2Tang S Y, Chen L S. Chaos in functional response host-parasitoid ecosystem models[J]. Chaos, Solitons and Fractals, 2002,13:875-884. 被引量:1
  • 3赵立纯,张庆灵,杨启昌.具有周期系数的单种群模型的最优脉冲控制[J].东北大学学报(自然科学版),2002,23(11):1040-1043. 被引量:4
  • 4Parker T S, Chua L O. Practical numerical algorithms for chaotic systems[M]. New York: Springer, 1989.66-71. 被引量:1
  • 5Rasband S N. Chaotic dynamics of nonlinear system[M]. New York: Wiley/Interscience, 1990.187-195. 被引量:1
  • 6Isidori A. Nonlinear control systems[M]. 3rd ed. New York: Springer, 1995.137-218. 被引量:1
  • 7张化光等编著..混沌系统的控制理论[M].沈阳:东北大学出版社,2003:303.
  • 8程代展编著..非线性系统的几何理论[M].北京:科学出版社,1988:318.
  • 9YuChang,Xu-dongLi.Dynamical Behaviors in a Two-dimensional Map[J].Acta Mathematicae Applicatae Sinica,2003,19(4):663-676. 被引量:1

二级参考文献15

  • 1David Whitley. Discrete dynamical Systems in dimensions one and two. Bull. London Math. Soc., 15:177-217 (1983). 被引量:1
  • 2David whitley. On the periodic points of a two-parameter family of maps of the plane. Acta. Appl.Math., 5:279-311 (1986). 被引量:1
  • 3Guckenheimer, J., Holemes, P.J. Nonlinear oscillations, dynamical systems and bifurcations of vector fields.Springer-Verlag, New York, 1983. 被引量:1
  • 4Iooss, G. Bifurcation of maps and applications. North-Holland, Amsterdan 1977. 被引量:1
  • 5Jiang, H., Rogers, T.D. The discrete dynamics of symmetric competition in the plane, J. Math. Biol., 25:573-596 (1987). 被引量:1
  • 6Li, T.Y. Yorke, J.A. Period three implies chaos. Amer. Math. Monthly, 82:985-992 (1975). 被引量:1
  • 7Marotto,F.R.Snap-back repellers imply chaos in R^n.J.Math.Anal.and Appl.,63:199-223(1978) 被引量:1
  • 8May,R.Biological populations with non-overlapping generations:stable points,stable cycles and chaos.Science,186:645-647(1974) 被引量:1
  • 9May, R. Biological populations obeying difference equations: stable points, periodic orbits and chaos. J.Theoret. Biol., 51:511-524 (1975). 被引量:1
  • 10May, R., Oster, G. Bifurcations and dynamical stability in simple ecological models. Am. Naturalist., 110:573-599 (1976). 被引量:1

共引文献3

同被引文献48

引证文献8

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部