摘要
考虑一类带有时滞的种群增长模型的混沌控制问题.通过计算系统的Lyapunov指数和Lyapunov维数验证了一类带有时滞的种群增长模型具有混沌现象.运用反馈线性化方法,设计反馈控制器,对成虫进行捕获或投放,制定合理的开发策略,将系统中的混沌轨道稳定到理想的目标轨道,即不稳定的不动点,进而使不稳定的种群系统达到稳定.数值仿真说明该反馈控制器行之有效,可以使处于混沌状态的生物种群稳定到理想状态,实现种群的有序生存,保持自然界的生态平衡.
Discusses the problem of the chaotic control of a class of population growth models with time lag. Computing the Lyapunov exponents and Lyapunov dimension of the system, the fact that there is a chaos phenomenon in the population growth models with time lag is verified. A feedback controller is designed to capture or release adult population by feedback linearization as to stabilize the chaotic orbits and enable them to be ideal target ones, i.e. , unstable fixed points of the chaotic system. The unstable population system will therefore become stable by a rational development policy. Numerical simulations indicate that this feedback controller is effective in practice. It will cause the biological population in chaos states to stabilize and come into an ideal state, thus realizing orderly existence with balance of nature maintained for long.
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2005年第10期926-929,共4页
Journal of Northeastern University(Natural Science)
基金
辽宁省普通高校学科带头人基金资助项目(124210)