期刊文献+

递归神经网络在堆石坝地震响应分析中的应用 被引量:2

Application of Recurrent Neural Network to Earthquake Response Analysis of Rock-fill Dam
下载PDF
导出
摘要 针对堆石坝系统的地震响应分析问题,提出了一种递归神经网络建模方法。该神经网络模型包含内部状态神经元的反馈并具有状态空间形式。借助于该网络模型的逼近能力和动态信息存储能力,从观测的结构动态系统输入输出数据中重构原系统的输入输出特性,并对新的输入信号做出相应的预测和响应。分别对理想的有限元响应数据和实测的响应数据进行了仿真。结果表明,所提出的神经网络方法较好地学习了这两组结构系统的动态特性,并显示出较好的预测效果。 A kind of recurrent neural network was applied to the earthquake response analysis for Rock-fill Dam, The neural network model contains the feedback of the state neurons and takes the form of state space representation. With the approximation capability and dynamic information storage capability, the neural network model was trained to reconstruct the input-output characters from the observed input-output data. The model trained could perform response analysis and make prediction for new earthquake wave, Two data sets were used to test the method, the one was from a finite element program, and the other was from a real-life experiment. The responses of Rock-fill dam are well modeled, and the simulation result for new data indicates the better prediction ability.
作者 韩敏 史志伟
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第10期2533-2536,2540,共5页 Journal of System Simulation
基金 国家自然科学基金项目(60374064)
关键词 递归神经网络 辨识 非线性系统 堆石坝 recurrent neural network identification nonlinear system rock-fill dam
  • 相关文献

参考文献3

二级参考文献15

  • 1董聪,夏人伟.智能结构设计与控制中的若干核心技术问题[J].力学进展,1996,26(2):166-178. 被引量:64
  • 2张乃尧 阎平凡.神经网络于模糊控制[M].北京:清华大学出版社,1998.85-93. 被引量:1
  • 3[1]Elman J L. Finding structure in time [J]. Cognitive Science, 1990,14(2):179-211 被引量:1
  • 4[2]Scott G M and Ray W H. Creating efficient nonlinear network process models that allow model interpretation [J]. J. Process Control, 1993,3(3):163-178 被引量:1
  • 5[3]Pham D T and Oh S J. A recurrent backpropagation neural network for dynamical system identification [J]. Journal of Systems Engineering, 1992,2(4):213-223 被引量:1
  • 6[4]Funahashi K. On the approximate realization of continuous mappings by neural networks [J]. Neural Networks,1989,2(3):183-192 被引量:1
  • 7[5]Hirsch M W and Smale S. Differential equations, dynamical systems and linear algebra [M]. San Diego: Academic Press,1974 被引量:1
  • 8[6]Sales K R and Billings S A. Self_tuning control of nonlinear ARMAX models [J]. Int. J. Control, 1990,51(4):753-769 被引量:1
  • 9孙增圻,智能控制理论与技术,1997年,193页 被引量:1
  • 10杨行峻,人工神经网络,1992年,119页 被引量:1

共引文献13

同被引文献17

  • 1吴建华,康永辉.呼和浩特市西河综合治理工程自动化监控系统[J].山西水利科技,2004(3):20-21. 被引量:3
  • 2赖伟,王君杰,韦晓,胡世德.桥墩地震动水效应的水下振动台试验研究[J].地震工程与工程振动,2006,26(6):164-171. 被引量:35
  • 3范立础.现代化城市桥梁抗震设计若干问题[J].同济大学学报(自然科学版),1997,25(2):147-154. 被引量:42
  • 4王锐.土石坝自动化监测系统安全评价研究[D].太原:太原理工大学图书馆,2003. 被引量:1
  • 5Sakai Junichi,Unjoh Shigeki. Shake table experiment on circular reinforced concrete bridge column under multidirectional seismic excitation[A].Reston:ASEC,2007.1-12. 被引量:1
  • 6LIU Hao-peng,SONG Bo,ZHANG Guo-ming. Study of hydrodynamic pressure on the cylindrical pile-cap pier in deep water subjected to seismic action[A].Reston:ASCE,2009.528-535. 被引量:1
  • 7刘 悦.神经网络集成及其在地震预报中的应用研究[D]上海:上海大学,2005. 被引量:1
  • 8Chakraverty S,Marwala T,Gupta P. Response prediction of structural system subject to earthquake motions using artificial neural network[J].Asian Journal of Civil Engineering (Building and Housing),2006,(03):301-308. 被引量:1
  • 9Caglar N,Elmas M,Yaman Z D. Neural networks in 3-dimensional dynamic analysis of reinforced concrete buildings[J].Construction and Building Materials,2008,(05):788-800.doi:10.1016/j.conbuildmat.2007.01.029. 被引量:1
  • 10闫 滨.大坝安全监控及评价的智能神经网络模型研究[D]大连:大连理工大学,2006. 被引量:1

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部