期刊文献+

应用极值理论计算在险价值——对上证指数的实证研究 被引量:3

Calculating VaR with extreme value theory: authentic proof analysis of Shanghai index
下载PDF
导出
摘要 在险价值(VaR)是度量市场风险的普遍工具,可看作是市场风险度量的基石.在估计资产尾部的VaR时,极值方法比传统方法更具优势.但是,一般的极值模型都假定数据是独立同分布的,而大多金融数据具有局部相关性,并不满足模型的条件.笔者利用分串的方法处理上证指数的数据,得到了较好的结果. Value-at-Risk (VaR) is a commonly used tool to measure the market risk, and also the benchmark in the risk management. The extreme value theory has more advantages than traditional tools in estimating the VaR of the tail of an asset. The general extreme value models suppose that the data are independent and have the identical distribution. However, most of financial dada are local dependent, so they do not meet the model conditions. The data of VaR of Shanghai index are estimated by using the method of declustering, and the result is vety good.
作者 张春英
出处 《天津城市建设学院学报》 CAS 2005年第3期217-219,共3页 Journal of Tianjin Institute of Urban Construction
关键词 上证指数 在险价值 极值理论 分串 Shanghai index value-at-risk (VaR) extreme value theory declustering
  • 相关文献

参考文献9

  • 1REISS R D,THOMAS M.Statical analysis of extreme values from insurance,finance,hydrology and other fields[M].Basel:Birkhauser Verlag,2001. 被引量:1
  • 2KOEDIJ K G,SCHAFGANS M M A,De VRIES C G.The tail index of exchange rate returns [J].Journal of International Economics,1990,29:93-108. 被引量:1
  • 3ALEXTANDER J.Extreme value theory for risk managers[R].Zuxich:Department Mathematik,ETH Zentrum,1999. 被引量:1
  • 4DIEBOLD F X,SCHUERMANN T,STROUGHAIR J D.Pitfalls and opportunities in the use of extreme value theory in risk management [R].[s.1.]:Wharton School Financial Institutions,1998. 被引量:1
  • 5COLES S.An introduction to statistical modeling of extreme values [M].Great Britain:Springer,2001. 被引量:1
  • 6王春峰著..金融市场风险管理[M].天津:天津大学出版社,2001:505.
  • 7SHI D J.Moment estimation for multivariate extreme value distribution [J].Applied Mathenatics-A Journal of Chinese Universities B,1995,10:61-68. 被引量:1
  • 8尹剑,陈芬菲.介绍一种二元阈值方法在股票指数上的应用[J].数理统计与管理,2002,21(2):26-29. 被引量:6
  • 9史道济,冯燕奇.多元极值分布参数的最大似然估计与分步估计[J].系统科学与数学,1997,17(3):244-251. 被引量:10

二级参考文献8

  • 1[1]Harry Joe, Richard L.Smith, l shay Weissm. Bivariate Threshold Methods for Extremes[J].J.R.Statist.Soc.B, 1992,54(1):171-183. 被引量:1
  • 2[2]Sibuya, M., Bivariate Extreme Distribution [J].Ann. Inst. Stat. Math., 1960,11. 被引量:1
  • 3[3]Pickands, J., Multivariate Extreme Value Distribution[A]. In Proc. 43rd Sess. Int. Statist. Inst.[C].Buenos Aires 859-878.Amsterdam: lnt. Statist. lnst,1981. 被引量:1
  • 4[4]Tawn,J,A.,Bivariate Extreme Value Theory-Models and Estimation[J]. Biometrika, 1988,75:397-415. 被引量:1
  • 5史道济,Acta Math Appl Sin,1995年,11卷,421页 被引量:1
  • 6史道济,Biometrika,1995年,82卷,644页 被引量:1
  • 7史道济,Techn Rep 2074,1992年 被引量:1
  • 8成平,参数估计,1985年 被引量:1

共引文献13

同被引文献12

  • 1徐国祥,吴泽智.我国指数期货保证金水平设定方法及其实证研究——极值理论的应用[J].财经研究,2004,30(11):63-74. 被引量:20
  • 2Carmona (2004),Statistical Analysis of Financial Data in S-Plus,Springer-Verlag,35 -41. 被引量:1
  • 3Embreehts,P.,Kuppelberg,C.,and Mikoseh,T.(1997),Modeling Extremal Events,Berlin:Springer Verlag. 被引量:1
  • 4Eric Zivot,and Jiahui Wang.(2002).Modeling Financial Time Seres with S -PLUS,Springer-Verlag,131-166. 被引量:1
  • 5Jorion,P.(1997),Value at Risk:The New Benchmark for Controlling Market Risk.The McGraw-Hill Company:Chicago. 被引量:1
  • 6Ruey S.Tsay.(2002).Analysis of Financial Time Series,John Wiley & Sons,256-296. 被引量:1
  • 7Smith,R.L.(1999),Measuring risk with extreme value theory,working paper,Department of Statistics,University of North Carolina at Chapel Hill. 被引量:1
  • 8Carmona (2004). Statistical Analysis of Financial Data in S-Plus. Springer-Verlag, 35-41 被引量:1
  • 9Eric Zivot, Jiahui Wang (2002). Modeling Financial Time Series with S-PLUS. Springer-Verlag, 131-166 被引量:1
  • 10Ruey S. Tsay(2002). Analysis of Financial Time Series. John Wiley & Sons, 256-296 被引量:1

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部