期刊文献+

基于多尺度随机模型的SAR图像无监督分割 被引量:1

Unsupervised segmentation of SAR image based on multiscale stochastic model
下载PDF
导出
摘要 根据SAR图像的成像机理,利用两种多尺度随机模型,即多尺度自回归(MultiscaleAutoregressive,MAR)模型和多尺度自回归滑动平均(Multiscale Aautoregressive Moving Average,MARMA)模型,分别来描述同一场景不同分辨率SAR图像像素间的统计相关性,并构造了相应的多分辨混合算法实现SAR图像的无监督分割。试验结果表明,提出的两种无监督分割方法是可行的,且MARMA模型比MAR模型能够更精确地捕捉SAR图像多尺度序列中不同类型地形的统计信息,使分割质量具有明显的改进。 According to the mechanism of SAR imaging, two unsupervised segmentation methods were proposed based on two class of multiscale stochastic model, namely multiscale autoregressive (MAR) model and multiscale autoregressive moving average (MARMA) model. These models capture the statistical information in a muhiscale sequence of SAR image, which is then used to implement unsupervised segmentation of SAR image via muhiresolution mixture algorithm. Experimental results over SAR images confirm the proposed segmentation methods are valid.
出处 《计算机应用》 CSCD 北大核心 2005年第10期2367-2369,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(60375003) 航空基础科学基金资助项目(03I53059)
关键词 SAR图像无监督分割 多尺度随机模型 多尺度自回归模型 多尺度自回归滑动平均模型 多分辨混合算法 unsupervised segmentation of SAR image muitiscale stochastic model multiscale autoregressive model multiscale autoregressive moving average model multiresolution mixture algorithm
  • 相关文献

参考文献6

  • 1LEE J, JURKEVICH I. Segmentation of SAR Images [J]. IEEE Transactions on Geoscience and Remote Sensing, 1989, 27:674 -680. 被引量:1
  • 2BASSERILLE M, BERVENISTE A. and Willsky A. Multiscale Autoregressive Processes, Part Ⅰ and Ⅱ [ A]. IEEE Transactions on Sigual Processing [C], 1992, 40:1915 - 1944. 被引量:1
  • 3WILLSKY A. Multiresolution Markov Models for Signal and Image Processing [ A]. Proceedings of the IEEE [ C], 2002, 9:1395 -1458. 被引量:1
  • 4SCHOEDER J, HOWARD D. Multiscale Modeling for Target Detection in Complex Synthetic Aperture Radar Imagery [ A]. Proceedings of IEEE Conference on Information, Decision and Control [ C ],1999.77 - 82. 被引量:1
  • 5MCLACHLAN G , PEEL D . Finite Mixture Models [ M ] . New York: Wiley, 2000. 被引量:1
  • 6OLIVER C , QUEGAN S . Understanding Synthetic Aperture radar Images [ M]. Boston London: Artech House, 1998. 被引量:1

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部