期刊文献+

改进的关联规则增量式更新算法 被引量:1

An Improved Algorithm For Updating Frequent Itemsets
下载PDF
导出
摘要 发现频繁项集是数据挖掘应用中的关键问题,发现过程的高花费要求对增量数据挖掘算法进行深入研究.考虑保持最小支持度不变,一个事务数据集d动态的添加到事务数据库D中时,利用基于矩阵的MFUP(Matrix_Fast_Update)算法生成事务数据库DUd中的频繁项集. Discovering frequent itemsets is a key problem in data mining applications and the high cost of the process leads to the need for incremental data mining algorithms. The paper keeps the minsup changeless when new transactions database d is added to old database D and generates the new frequent itemsets in D∪d by using the MFUP algorithm which is based on Matrix.
出处 《滨州学院学报》 2005年第3期33-37,共5页 Journal of Binzhou University
基金 山东省自然科学基金重大项目(Z2004G02)山东省中青年科学家奖励基金项目(03BS003)
关键词 数据挖掘 频繁项目集 关联规则 增量式更新 data mining frequent itemsets association rules incremental updating
  • 相关文献

参考文献1

二级参考文献8

  • 1Jhan M Kamber著 范明 孟小峰等译.数据挖掘:概念与技术[M].北京:机械工业出版社,2001.. 被引量:2
  • 2R Agrawal, T Imielinski, A Swami. Mining association rules between sets of items in large databases. The ACM SIGMOD Int'l Conf Management of Data,Washington D C, 1993 被引量:1
  • 3J Han, M Kamber. Data Mining: Concepts and Techniques. Beijing: Higher Education Press, 2001 被引量:1
  • 4R Agrawal, R Srikant. Fast algorithm for mining association rules. The 20th Int'l Conf on VLDB, Santiago, Chile, 1994 被引量:1
  • 5M Houtsma, A Swami. Set-oriented mining for association rules in relational databases. In: P Yu, A Chen eds. Proc of the Int'l Conf on Data Engineering. Los Alamitos, CA: IEEE Computer Society Press, 1995. 25~33 被引量:1
  • 6A Savasere, E Omiecinski, S Navathe. An efficient algorithm for mining association rules. The 21st Int'l Conf on VLDB, Zurich, Switzerland, 1995 被引量:1
  • 7J Han, Y Fu. Discovery of multiple-level association rules from large databases. The 21st Int'l Conf on VLDB, Zurich, Switzerland, 1995 被引量:1
  • 8D W Cheung, J Han, V T Ng et al. Maintenance of discovered association rules in large databases: An incremental updating technique. The 12th Int'l Conf on Data Engineering, New Orleans, Louisiana, 1996 被引量:1

共引文献62

同被引文献12

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部