期刊文献+

一类拟线性椭圆方程的多重解

Multiplicity Solutions for the Eigenvalue Problem of a Quasilinear Elliptic Equation
下载PDF
导出
摘要 利用变分法和一个三临界点定理,证明了一类拟线性椭圆方程-div(a|u|p)|u|p-2u)=λf(x,u),u=0,ΩΩ,在某些新的条件下至少存在三个解,其中ΩRn(n≥1)是一个具有光滑边界的有界区域,且a∈C(R+,R),p>n,λ>0为一实参数.并给出了该结论在毛细现象中的广义Capillarity方程的一个应用. Using variational methods and a three critical points theorem, the existence of at least three weak solutions for the following quasilinear elliptic equation is studied under some novel conditions.{-div(α|△↓u^·|^p)|△↓u|^p-2△↓u)=λf(x,u),Ω,u=0,δΩ,Where Ω∪→R^n(n≥1)is a bounded domain with smooth boundary,λ〉0 is a real parameter,p is real number larger than n.As the application of main theorem,an example about Capillarity equation is obtained.
出处 《应用数学》 CSCD 北大核心 2005年第4期528-532,共5页 Mathematica Applicata
基金 教育部跨世纪优秀人才基金(2003) 上海高校优秀青年教师后备人选基金(04YQHB149) 上海理工大学青年科研基金(04XQN018)资助
关键词 三临界点定理 拟线性椭圆方程 变分法 Three critical points theorem Quasilinear elliptic equation Variational methods
  • 相关文献

参考文献10

  • 1Chen Z, Luo T. The eigenvalue problem of p- I.aplacian Like Equation[J]. Acta. Mathematica Sinica,2003,46: 631 ~638. 被引量:1
  • 2Ubilla P. Multiplicity results for the 1-Dimensional generalized p- Laplacian[J]. J. Math. Anal. Appl. ,1995,190: 611~623. 被引量:1
  • 3Ricceri B. On a three critical points theorem[J]. Arch. Math. (Basel), 2000,75 : 220 ~ 226. 被引量:1
  • 4Bonanno G. Existence of three solutions for a two point boundary value problem[J].Appl. Math. Lett.,2000.13:53~57. 被引量:1
  • 5Talenti G. Some inequalities of Sobolev type on two-dimensional spheres[A]. Walter W (Ed) ,General Inequalities[C]. New York:Internat. Ser. Number. Math. ,1987,80(5) ..401~408. 被引量:1
  • 6胡适耕著..非线性分析理论与方法[M].武汉:华中理工大学出版社,1996:282.
  • 7Peral I. Some results on quasilinear elliptic equations., growth versus shape [A]. Ambrosetti, Chang K Ekeland I (Eds). Nonlinear Functional Analysis Applications to Differential Equations[C]. Singapore: World Scientific, 1998,153~202. 被引量:1
  • 8Struwe M. Variational Methods.. Applicaitons to Nonlinear Partial Differential Equations and Hamiltonian Systems[M]. New York: Springer-verlag, 1996. 被引量:1
  • 9Dang H,Schmitt K,Shivaji R. On the number of solutions of boundary value problems involving the p- Laplacian[J]. Electron. J. Differential Equations, 1996,1 : 1 ~ 9. 被引量:1
  • 10Rabinowitz P H. Minimax methods in critical point theory with applications to differential equations[M]. Rhode Island: CBMS. American Mathematical Society Providence, 1986. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部