摘要
采用多块对接网格技术和时域有限体积法(FVTD)研究了典型目标和多体的电磁场散射问题.控制方程采用三维一般曲线坐标系下的时变麦克斯韦方程组.时间方向采用四步Runge-Kutta方法,空间离散采用基于通量雅可比矩阵特征结构的通矢量差分分裂,依赖变量采用MUSCL插值.时间方向的计算精度为2阶,空间方向的计算精度可达3阶.典型算例的雷达散射截面(RCS)的计算结果与理论解吻合很好.对于多体问题计算与文献结果相当一致,说明该算法具有对复杂拓扑结构外形(包括多体问题)进行数值模拟的能力.
Multi-block patched grids in conjunction with a finite volume time domain(FVTD) algorithm are used to solve classic multi-body electromagnetic scattering problems. The governing equations of the Maxwell equations are cast into three-dimensional general curvilinear coordinates. The approach uses four-stage Runge-Kutta scheme for time integration and flux vector splitting based on eigen structure of flux Jaeobian matrices for spatial diseretization. Monotonic upstream shemes for conservation laws (MUSCL) scheme for interpolation is used for the dependent variable. The resolution for temporal discretization is second order and that for spatial discretization is third order. Numerical results for the radar cross section(RCS) of a classical configuration agree well with the analytical results. And the results for muhi-body calculation agree well with that in references, h shows that the algorithm developed is able to simulate complex topology configuration (including multibody) problems.
出处
《计算物理》
CSCD
北大核心
2005年第5期465-470,共6页
Chinese Journal of Computational Physics
基金
国家杰出青年基金(批准号:10225208)
创新研究群体科学基金(批准号:10321002)资助项目