期刊文献+

Eu^(3+)掺杂ZnO-MgO-La_2O_3-B_2O_3基发光光纤的弹脆塑性 被引量:2

Elastic-Brittle-Plasticity of Luminescence Fibers of Eu^(3+) Doped ZnO-MgO- La_2O_3-B_2O_3
下载PDF
导出
摘要 采用高温固相反应法制备了Eu3+掺杂ZnO-MgO-La2O3-B2O3基质的光致发光光纤,通过轴向拉伸试验测量了该光纤的应力-应变曲线。应用弹脆塑性理论研究了屈服面的变化和应力-应变的本构关系,计算了拉伸弹性模量、拉伸强度、拉伸最大负荷、拉伸强度的应变、断裂伸长率和材料的脆性指数。结果表明,该光纤弹性模量高于普通玻璃和大理石,接近于硬铝合金和轧制铝,其拉伸强度和所能承载的负荷都较大。 Luminescence fibers of Eu^3+ doped ZnO-MgO-La2O3-B2O3 were prepared by solid state reaction at high temperatures. Their diameters were in the range of 0.01 mm-0.30 mm and their lengths were more than 10 m. Their curves of stress-strain were measured by the axial extension test. The change of the yield surface and the constitutive relations of the stress-strain were investigated based on the theory of elastic-brittle-plastic. Their elastic modulus, intensity, stress peak load, strain of stress intensity, elongation ratio to rupture of the axial extension, and brittleness index of the material were calculated. It is found that their strong emission band of Eu^3+ with a maximum at 614 nm belongs to the electric dipole transition of 5D0-7F2 and the emission at 581 nm with 40% relative intensity to 614 nm belongs to magnetic dipole transition of 5D0-7F1. The host emission peak presenting to 438 nm overlaps its excitation band. The result shows that their elastic modulus are higher than those of common glass and marble, close to hard aluminum alloy and rolled aluminum. Their stress intensity and peak load are relatively big.
机构地区 延边大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2005年第9期1373-1376,共4页 Rare Metal Materials and Engineering
基金 国家自然科学基金资助项目(20261006) 吉林省科技发展计划项目(20040506-2)
关键词 发光光纤 弹性模量 应力-应变曲线 弹脆塑性 ZnO-MgO-La2O3-B2O3 luminescence fiber elastic modulus curve of stress-strain elastic-brittle-plasticity ZnO-MgO-La2O3-B2O3
  • 相关文献

参考文献12

  • 1Masahide T, Manadu I, Ryoji K et al. JAppl Phys[J], 1998, 83(7): 3920 被引量:1
  • 2Tanabe S, Todoroki S, Hirao K et al. J Non-Cryst Solids[J], 1990, 122: 59 被引量:1
  • 3Nogam M, Abe Y. J Non-Cryst Solids[J], 1996, 197: 73 被引量:1
  • 4Mueller H. J Amer Ceram Soc[J], 1938, 21(1): 27 被引量:1
  • 5Hartog A H, Conduit A J, Payne D N. Opt And Quantum Elec [J], 1979, 11(3): 265 被引量:1
  • 6Carr J J, Saikkonen S L, Williams D H. Fiber and Intergraed Optics[J], 1990, 9(4): 393 被引量:1
  • 7ZhaoYongqing(赵永庆) MaXuedan(马雪丹) WuWeilu(吴玮璐)etal.Rare MetalMaterials and Engineering(稀有金属材料与工程)[J],2003,32(11):885-885. 被引量:1
  • 8TangHuiping(汤慧萍) HuangBaiyun(黄伯云) LiuHaiyan(刘海彦)etal.RareMetal Materials and Engineering(稀有金属材料与工程)[J],2004,33(1):23-23. 被引量:1
  • 9YangZhaoling(杨照玲) LiJianping(李建平) XiZhengping(奚正平)etal.RareMetal Materials and Engineering(稀有金属材料与工程)[J],2003,32(9):748-748. 被引量:1
  • 10Matsubara T. The Structrue and Properties of Matter[M]. Tokyo: Iwanami ShotenPublishers, 1982: 182 被引量:1

同被引文献22

  • 1张希艳,卢利平,刘全生,米晓云,王晓春,柏朝晖.CaAl_2O_4:Eu^(2+),Nd^(3+)纳米粉体的合成与表征[J].稀有金属材料与工程,2005,34(8):1255-1258. 被引量:6
  • 2Petushkov A A, Shilov S M, Puzyk M Vet al. Glass Physics and Chemistry[J], 2004, 30(4): 333 被引量:1
  • 3Vilma C Costa, Wander L Vasconcelos, Kevin L Bray. Journal of Sol-Gel Science and Technology[J], 1998, 13(1-3): 605 被引量:1
  • 4Han X M, Lin J, Pang M L, Yu M et al. Applied Physics A:Materials Science & Processing[J] , 2005, 80(7): 1547 被引量:1
  • 5Kutty T R N, Jagannathan R, Rao R P. Material Research Bulletin[J], 1990, 25(3): 343 被引量:1
  • 6Judd B R. Phys Rev[J], 1962, 127(3): 750 被引量:1
  • 7Offlt T G S. J Chem Phys[J], 1988, (37): 511 被引量:1
  • 8Kutty T et al. Mat Res Bull[J], 1990, 25:1355. 被引量:1
  • 9Matsuzawa T et al. J Electrochem Soc[J], 1996, 143:2670. 被引量:1
  • 10Xia Changtai, Shi Chunshan. Materials Research Bulletin[J], 1997, 32(1): 107. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部