期刊文献+

不完备信息系统中知识获取算法 被引量:4

Algorithms for Knowledge Acquisition in Incomplete Information System
下载PDF
导出
摘要 粗糙集理论是一种新的处理模糊和不确定知识的软计算工具。应用粗糙集理论,可以将隐藏在系统的知识能够以决策规则的形式表达出来。根据粗糙集上下近似的概念,决策规则能够分成确定性规则和可能性规则两种。本文将介绍从不完备信息系统中知识获取的算法,通过这些算法能够从不完备决策表中生成一种确定性的规则和两种可能性的规则,同时也介绍了不完备决策表中描述约简的算法。 Rough Set theory is emerging as a powerful tool for reasoning about data. Using Rough Set theory, knowledge hidden in Incomplete Information System may be unraveled and expressed in the form of decision rules. According to the lower and upper approximations, decision rules can be divided into certain and possible rules. Algorithms for knowledge acquisition in incomplete information systems are proposed. As the result, one type of “certain” and two types of “possible” decision rules are generated from incomplete decision tables. Algorithms for reduction of descriptors in such tables are also discussed.
出处 《计算机科学》 CSCD 北大核心 2005年第9期149-152,共4页 Computer Science
基金 国家自然科学基金(60373078) 浙江省教育厅科研计划项目(20040538)资助
关键词 不完备信息系统 粗糙集算法 决策规则 确定性 决策表 软计算工具 Rough sets, Decision rules, Incomplete information systems, Algorithms
  • 相关文献

参考文献15

二级参考文献31

  • 1王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 2苗夺谦.Rough Set理论及其在机器学习中的应用研究[博士学位论文].北京:中国科学院自动化研究所,1997.. 被引量:1
  • 3[1]Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning a bout Data. Boston: Kluwer Academic Publishers,1991 被引量:1
  • 4[6]Ziarko W. Variable precision rough set model. Journal of Computer and System Sciences,1993,46(1):39~59 被引量:1
  • 5[7]Greco S,Matarazzo B,Slowinski R. A new rough set approach in multicreteria and multiattribute classification. In: Lecture Notes in Artificial Intelligence 1424, New York: Springer-Verlag, 1998 被引量:1
  • 6[8]Slezak D. Approximate reducts in decision tables. In: Proceedings of IPMU' 96 ,Granada,Spain, 1996,3:159~ 1164 被引量:1
  • 7[9]Quafatou M. α-RST: A generalization of rough set theory. In formation Sciences,2000,124(1~4) :301~316 被引量:1
  • 8[10]Kryszkiewicz M. Comparative studies of alternative type of knowledge reduction in inconsistent systems. International Journal of Intelligent Systems, 2001,16(1): 105~120 被引量:1
  • 9Baader F, et al. The Description Logic Handbook: Theory,Implementation and Applications. Cambridge: Cambridge University Press, 2002. 被引量:1
  • 10Brachman R J, Schmolze J G. An overview of the KL-ONE knowledge representation system. Cognitive Science, 1985, 9(2): 171-216. 被引量:1

共引文献1055

同被引文献21

  • 1李千目,戚湧,张宏,刘凤玉.基于粗糙集神经网络的网络故障诊断新方法[J].计算机研究与发展,2004,41(10):1696-1702. 被引量:28
  • 2程军圣,于德介,杨宇.基于内禀模态奇异值分解和支持向量机的故障诊断方法[J].自动化学报,2006,32(3):475-480. 被引量:35
  • 3Wu Wei-Zhi, Mi Ju-Sheng, Zhang Wen-Xiu. A new rough set approach to knowledge discovery in incomplete information systems[C]. Xi'an: IEEE Proceedings of the Second International Conference on Machine Learning and Cybernetics, 2003:1713- 1718. 被引量:1
  • 4Mi Ju-Sheng, Wu Wei-Zhi, Zhang Wen-Xiu. Approaches to approximation reducts in inconsistent decision tables[J]. Lecture Notes in Artificial Intelligence, 2003,2639:283-286. 被引量:1
  • 5Khoo L P, Tor S B, Zhai L Y. A rough - set based approach for classification and rule induction[ J ]. International Journal of Advanced Manufacturing Tchnology, 1999,15:438 - 444. 被引量:1
  • 6Tsumoto S. Automated Induction of Medical Expert System Rules from Clinical Databases based on Rough Set Theory[J]. Journal of Information Sciences, 1998,112 : 67 - 84. 被引量:1
  • 7王伟辉 蔡台明.船舶泵系统信号处理与诊断模拟.海运研究学刊,2003,15:95-122. 被引量:1
  • 8Wu Wei - Zhi, Mi Ju- Sheng, Zhang Wen - Xiu. A new rough set approach to knowledge discovery in incomplete information systems[ C]//IEEE Proceedings of the Second International Conference on Machine Learning and Cybernetics. Xi' an: [s. n. ] ,2003:1713 - 1718. 被引量:1
  • 9王国雍.Rough sets理论与知识获取[M]西安:西安交通大学出版社,20015. 被引量:1
  • 10杨善林;倪志伟.机器学习与智能决策支持系统[M]北京:科学出版社,2004. 被引量:1

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部