期刊文献+

改进Biot固结理论移动网格有限元分析

Moving mesh finite element analysis of modified Biot's consolidation theory
下载PDF
导出
摘要 为了提高饱和土固结数值分析结果的精度,提出了一种基于改进Biot固结理论的移动网格有限元分析方法(FEM).该方法在传统Blot固结控制方程组中引入土水势方程(SWP)和移动网格算法,根据虚功原理和加权残值法推导了相应的增量有限元方程.通过算例分析研究了土水势方程和网格算法的影响.结果表明:改进理论的地基沉降和总土水势小于传统理论,而侧向位移大于传统理论.移动网格算法的各场变量值小于固定网格算法.提出的方法在小变形理论范畴内能更好地模似地基固结性状. For improving the precision of numerical analysis of saturated soils' consolidation, a new moving mesh finited-element method (FEM) based on modified Biot's consolidation theory was proposed. The method introduced soil-water potential (SWP) equation and moving mesh FEM into the governing equations of traditional Biot's consolidation theory. Based on the principle of virtual work and the method of weighted residuals, corresponding incremental FEM equations were formulated. A case study was carried out to investigate the influences of the SWP equation and mesh schemes. The results show that compared with the traditional theory, the settlement and the total SWP by modified theory are less, but lateral displacement is greater. The moving mesh FEM predicts field-variable with smaller value than the fixed mesh FEM. The presented method provides higher precision for simulating a foundation's consolidation performance within the framework of small strain theory.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2005年第9期1383-1387,共5页 Journal of Zhejiang University:Engineering Science
关键词 Biot同结理论 有限元分析 土水势 移动网格 地基变形 Biot's consolidation theory finite element analysis soil-water potential moving mesh foundation deformation
  • 相关文献

参考文献13

  • 1龚晓南主编..土工计算机分析[M].北京:中国建筑工业出版社,2000:394.
  • 2钱家欢,殷宗泽主编..土工原理与计算 第2版[M].北京:中国水利水电出版社,1996:721.
  • 3曹宁,彭劼,彭如海,朱春福.真空-堆载联合预压法加固高速公路路基:表面沉降测试和数值分析[J].华东船舶工业学院学报,2001,15(2):81-85. 被引量:5
  • 4BIOT M A. General theory of three-dimensional consolidation [J]. Journal of Applied Physics, 1941,12: 155- 164. 被引量:1
  • 5BIOT M A. Theory of elasticity and consolidation for a porous anisotropic solid [J]. Journal of Applied Physics,1955,26(2): 182-185. 被引量:1
  • 6BIOT M A. Theory of deformation of a Porous viscoelastic anisotropic solid [J]. Journal of Applied Physics, 1956,27(5): 459-467. 被引量:1
  • 7BIOT M A. Mechanics of deformation and acoustic propagation in porous media [J]. Journal of Applied Physics, 1962,33(4): 1482- 1498. 被引量:1
  • 8SANDHU R S, WII.SON E I.. Finite element analysis of seepage in elastic media [J]. Journal of Engineering Mechanics, Division ASCE, 1969,95(3) :641 - 652. 被引量:1
  • 9蒋明镜,沈珠江.饱和软土的弹塑性大变形有限元平面固结分析[J].河海大学学报(自然科学版),1998,26(1):73-77. 被引量:18
  • 10MILLER K, MILLER R N. Moving finite elements Ⅰ[J]. SIAM Journal on Numerical Analysis, 1981, 18:1019 - 1032. 被引量:1

二级参考文献7

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部