期刊文献+

一类含有P-Laplacian算子的奇异边值问题解的确切个数 被引量:3

Exact Number of Solutions for p-Laplacian in Some Singular Boundary Value Problems
下载PDF
导出
摘要 讨论了一类p-L ap lac ian算子型的奇异边值问题正解的确切个数以及解的性质. This paper establishes the exact multiplicities and properties of positive solutions of p-Laplacian in some singular boundary value problems.
机构地区 济南大学理学院
出处 《应用泛函分析学报》 CSCD 2005年第3期241-249,共9页 Acta Analysis Functionalis Applicata
基金 国家自然科学基金(10171057) 山东省自然科学基金(Z2000A02)
关键词 奇异边值问题 正解 解的性质 singular boundary value problem positive solution properties of solutions
  • 相关文献

参考文献9

  • 1韦忠礼.负指数EmdenFowler方程奇异边值问题的正解[J].数学学报(中文版),1998,41(3):655-662. 被引量:37
  • 2韦忠礼,庞常词.一类含有p-Laplacian算子的奇异边值问题解的确切个数[J].数学年刊(A辑),2004,25(2):207-216. 被引量:5
  • 3Agarwal R P, O'Regan D. Singular boundary value problems for superlinear second order ordinary and delay differential equations[J]. J Differential Equations, 1996, 130: 333-355. 被引量:1
  • 4Wang Shinhwa, Long Dauming. An exact multiplicity theorem involing concave-convex nonlinearities and its application to statinary solutions of a singular diffusion problem[J]. Nonlinear Analysis T. M.A. , 200l, 4,1: 469-486. 被引量:1
  • 5Korman P, Ouyang T. Exact multiplicity results for two classes of boundary value problems [J].Differential Integral Equations, 1993, 6: 1507-1517. 被引量:1
  • 6Liu Zhaoli. Exact number of solutions of a class of two point boundary value problems involing concave and convex nonlinearties[J]. Nonlinear Analysis, 2001, 46: 181-197. 被引量:1
  • 7Liu Zhaoli, Zhang Xuemei. A class of two point boundary value problems[J]. J Math Anal Appl, 2001,254: 599-617. 被引量:1
  • 8Taliaferro S D. A nonlinear singular boundary value problems[J]. Nonlinear Analysis, T. M. A, 1979,3: 897-90,1. 被引量:1
  • 9Zbang Y. Positive solutions of singular sublinear Emden-Fowler boundary value problems[J]. J MathAnal Appl, 1994, 185: 215-222. 被引量:1

二级参考文献17

  • 1Zhang Y,J Math Anal Appl,1994年,185卷,215页 被引量:1
  • 2Wang J S W,SIAM Rev,1975年,17卷,339页 被引量:1
  • 3Agarwal,R.P.& O'Regan,D.,Singular boundary value problems for superlinear secondorder ordinary and delay differential equations [J],J.Differential Equations,130(1996),333-355. 被引量:1
  • 4Lions,P.L.,On the existence of positive solutions of semilinear elliptice equations [J],SIAM Rev.,24(1982),441-467. 被引量:1
  • 5Wang Shinhwa & Long Dauming,An exact multiplicity theorem involving concaveconvex nonlinearities and its application to statinary solutions of a singular diffusionproblem [J],Nonlinear Analysis T.M.A.,44(2001),469-486. 被引量:1
  • 6Korman,P.,Li,Y.& Ouyang,T.,Exact multiplicity results for boundary value problemswith nonlinearities generalising cubic [J],Proc.Roy.Soc.Edinburgh,126A(1996),599-616. 被引量:1
  • 7Korman,P.& Ouyang,T.,Exact multiplicity results for two classes of boundary valueproblems [J],Differential Integral Equations,6(1993),1507-1517. 被引量:1
  • 8Laetsch,T.,The number of solutions of a nonlinear two Point boundary value problem[J],Indiana Univ.Math.J.,20(1970),1-13. 被引量:1
  • 9Smoller,J.& Wasserman,A.,Global bifurcation of steady-state solutions [J],J.Differential Equations,39(1981),269 290. 被引量:1
  • 10Korman,P.& Ouyang,T.,Multiplicity results for two classes of boundary value problems [J],SIAM J.Math.Anal.,26(1995),180-189. 被引量:1

共引文献40

同被引文献14

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部