期刊文献+

改进的小损伤结构动力学有限元建模方法 被引量:4

Improved Dynamical Modeling Method for Structure with Small Damage
下载PDF
导出
摘要 在遗传算法或神经网络方法识别结构损伤位置和程度时,都是基于少量的在线测量的损伤结构振动响应数据和大量的模型仿真数据来实现的,因而建立高效和精确的损伤结构动力学有限元模型,以便仿真获得损伤结构的大量动力学响应数据是十分重要的基础前提工作。本文针对ANSYS结构分析软件在建立结构小损伤有限元动力学模型存在两个关键问题,结构损伤处直接网格划分的计算结果误差和网格节省问题,以结构损伤振动检测的实际需要为出发点,提出了建立含小损伤结构的ANSYS动力学建模技术,研究了结构局部小损伤及其位置与所在处单元刚度矩阵变化的数量关系。 The existing methods for structural damage identification, such as GA algorithms and neural networks technology, are usually implemented based on few measured data and a large number of simulation data from structural vibration responses. Construction of an accurate and efficient dynamics model for a structure with different damage becomes an important precondition, thus plentiful simulation data of structural vibration response can be acquired using the dynamics model of the structure with damage. There are two problems during direct meshing small structural damage in FEM modeling, i.e., excessive griding number and unavoidable errors from different meshing for the same damaged structure. To solve these two problems, an improved modeling method based on modifying element stiffness matrix at damage position is presented, and corresponding algorithm for damaged element stiffness matrix is adopted. The influence of damage position and constraint conditions on the modification coefficient for small structural damage is simultaneously discussed.
机构地区 西北工业大学
出处 《应用力学学报》 EI CAS CSCD 北大核心 2005年第3期431-434,共4页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金项目(50375123)
关键词 结构小损伤检测 单元刚度矩阵 有限元网格 small structural damage,FEM mesh,element stiffnes matrix.
  • 相关文献

参考文献7

  • 1Duke J C. Structural health monitoring: Before and after crack birth[J]. Materials Evaluation, 2004, 62 (1): 53~55 被引量:1
  • 2Hera A, Hou Z K. Application of wavelet approach for ASCE structural health monitoring benchmark studies[J]. Journal of Engineering Mechanics ASCE, 2004, 130 (1): 96~104 被引量:1
  • 3Pawar P M, Ganguli R. Genetic fuzzy system for damage detection in beams and helicopter rotor blades[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192 (16-18): 2031~2057 被引量:1
  • 4Yam L H, Yan Y J, Cheng L, et al. Identification of complex crack damage for honeycomb sandwich plate using wavelet analysis and neural networks[J]. Smart Materials & Structures, 2003, 12 (5): 661~671 被引量:1
  • 5Kao C Y, Hung S L. Detection of structural damage via free vibration responses generated by approximating artificial neural networks[J]. Computers & Structures, 2003, 81 (28-29): 2631~2644 被引量:1
  • 6Talreja R. Damage Mechanics of Composite Materials. In: Composite Materials Series 9[M]. Amsterdam: Elsevier, 1994 被引量:1
  • 7Kuo W S, Pon P J. Elastic module and damage evolution of three-axis woven fabric composites[J]. Journal of Materials Science 1997, 32 (20): 5445~5455 被引量:1

同被引文献33

  • 1丁幼亮,李爱群.基于振动测试与小波包分析的结构损伤预警[J].力学学报,2006,38(5):639-644. 被引量:25
  • 2姜绍飞,徐云良,张春梅,陈林.基于小波包分解的数据融合损伤识别方法[J].沈阳建筑大学学报(自然科学版),2006,22(6):881-884. 被引量:4
  • 3Duke J C. Structural health monitoring: Before and after crack birth[J]. Materials Evaluation, 2004, 62 (1): 53-55. 被引量:1
  • 4Hera A, Hou Z K. Application of wavelet approach for ASCE structural health monitoring benchmark studies[J]. Journal of Engineering Mechanics ASCE, 2004, 130 (1):96-104. 被引量:1
  • 5Kaazem Moslem, Ramin Nafaspour. Structural Damage Detection by Genetic Algorlthms[J]. AIAA Journal, 2002, 40(7):1395-1401. 被引量:1
  • 6Kao C Y, Hung S L. Detection of structural damage via free vibration responses generated by approximating artificial neural networks[J]. Computers & Structures, 2003, 81 (28-29):2631-2644. 被引量:1
  • 7Talreja R. Damage Mechanics of Composite Materials. Composite Materials Series 9[M]. Amsterdam:Elsevier, 1994. 被引量:1
  • 8Ve.stroni F, Capecchi D. Damage detection in beam structures based on frequency measurements[J]. Journal of Engineering Mechanics, 2000, 126: 761-768. 被引量:1
  • 9Yam L H, Yan Y J, Cheng L, et al. Identification of complex crack damage for honeycomb .sandwich plate using wavelet analysis and neural networks[J]. Smart Materials & Structures, 2003, 12 (5):661-671. 被引量:1
  • 10BENZIE R, SUTERA A, VULPIANI A. The mechanism of stochastic resonance[J]. J. Phys. A, 1981 (14) : 453-457. 被引量:1

引证文献4

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部