期刊文献+

分数倍抽样率转换器的时变网络结构及其FPGA实现 被引量:4

Time-Varying Network Architecture of Fractional Multiple Sampling Rate Converter and Its FPGA Implementation
下载PDF
导出
摘要 提出了分数倍抽样率转换器的高效时变网络结构的设计方法,并用现场可编程门阵列(FPGA)实现。通过对分数倍抽样率转换器的多相结构与时变网络结构的比较,指出在实现分数倍抽样率转换器时,时变网络结构克服了分数延迟的问题,结构简单;整个设计采用并行工作方式以提高系统的运算速度;采用低抽样率下进行滤波运算,从而大大降低了运算量。以I/D=256/1 023倍抽样率转换器为例,用FPGA XC 2V 250-5来实现时变网络结构的设计,芯片利用率为61%,最高工作频率可达92.225 MH z。 The design method for the efficient time-varying network architecture of the fractional multiple sampling rate converter is presented and its field programmable gate array (FPGA) is implemented. Compared the polyphase architecture with the time-varying network architecture of the fractional multiple sampling rate converter, the time-varying architecture overcomes a fractional delay problem when implementing the fractional multiple sampling rate converter, and so its structure is simple. This design for the parallel pipeline structure is used to improve the processing speed. The operated filtering at a low sampling rate can reduce the count quantity. When the fractional multiple sampling rate is I/D=256/1023, the whole design is implemented with one chip of XC2V250-5 FPGA, the use factor of the chip is 61% and the maximum frequency is 92. 225 MHz. The design is verified by simulation and measurement results.
出处 《数据采集与处理》 CSCD 北大核心 2005年第3期268-271,共4页 Journal of Data Acquisition and Processing
关键词 分数倍抽样率转换器 多相结构 时变网络结构 现场可编程门阵列 fractional multiple sampling rate converter polyphase architecture time-varying network architecture field programmable gate array
  • 相关文献

参考文献6

  • 1Wu Cheng-shing, Wu An-yeu. A novel multirateadaptive FIR filtering algorithm and structure[A]. 1999 IEEE International Conference[C]. Phoenix, 1999. 被引量:1
  • 2Mehendale M,Sherlekar S D.Low power realization of FIR filters using multirate architectures[A]. Ninth International Conference on VLSI Design[C]. Bangalore, India,1996. 被引量:1
  • 3Emami S. New methods for computing interpolation and decimation using polyphase decomposition[J]. IEEE Transactions, 1999, 42(4):311~314. 被引量:1
  • 4Coffey M W. Optimizing multistage decimation and interpolation processing[J]. Signal Processing Letters, IEEE, 2003,10(4):107~110. 被引量:1
  • 5Webb J L H. Transposed FIR filter structure with time-varying coefficients for digital data resampling[J]. Signal Processing, IEEE Transactions, 2000,48(9):2594~2600. 被引量:1
  • 6Shiraishi M. A simultaneous coefficient calculation method for sinc/sup N/FIR filters[J]. Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions, 2003, 50(4):523~529. 被引量:1

同被引文献26

  • 1宫丰奎,李兵兵,张乔乔.一种利用曲线拟合设计内插滤波器的新方法[J].通信学报,2004,25(9):118-124. 被引量:10
  • 2Richard G L.朱光明等译.数字信号处理[M].第2版,北京:机械工业出版社,2006:259-269. 被引量:1
  • 3Babic D and Renfors M. Power efficient structure for conversion between arbitrary sampling rates [J]. IEEE Signal Processing Letters, 2005, 12(1): 1-4. 被引量:1
  • 4Wang Yan, Serpedin E, and Ciblat P. An alternative blind feedforward symbol timing estimator using two samples per symbol[J]. IEEE Trans. on Communications, 2003, 51(9): 1451-1455. 被引量:1
  • 5CCSDS 401.0-B. Radio Frequency and Modulation Systems- Part 1: Earth Stations and Spacecraft. Blue Book [S]. May 1999. 被引量:1
  • 6Xilinx, Inc. Virtex-4 Datasheets: Virtex-4 Family Overview, Ver2.0.2007:1. 被引量:1
  • 7Vaidyanathan P P. Multirate digital filters, filter banks, polyphase networks, and applications: A tutorial [C]. Proc. IEEE, 1990, 78(1): 56-93. 被引量:1
  • 8Vaidyanathan P P. Filter banks in digital communications [J]. IEEE Circuits and Systems Magazine, 2001, 1(2): 4-25. 被引量:1
  • 9Intersil Corporation. HSP50214B Datasheet, FN4450(4). 2007: 1-2. 被引量:1
  • 10Analog Devices, Inc. AD6620 Datasheet, Rev A. 2001: 1-3. 被引量:1

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部