期刊文献+

GA及惩罚函数思想在渡槽优化中的应用 被引量:5

Applications of GA and the Idea of Penalty Function in Optimization of Flume
下载PDF
导出
摘要 针对工程优化中的多变量、复杂非线性约束条件问题,借用惩罚函数的思想,利用M ATLAB 7.0平台上的遗传算法(GA)工具箱,将传统优化方法中的惩罚函数思想与遗传算法相结合,提出了一种应用于M ATLAB 7.0中GA工具箱中的惩罚函数法,并对某渡槽结构进行优化分析,得出了一些有意义的结论。 Aimed at optimum design of engineering with multivariable and nonlinear constraints, and using the idea of penalty function and the GA toolbox based on MATLAB7. 0, we put forward a new method of penalty function applying to GA based on MATLAB7. 0 in combination with the traditional idea of penalty function and Genetic Algorithm. Optimum design of a certain flume is completed with the method, and we can draw some useful conclusions.
出处 《灌溉排水学报》 CSCD 北大核心 2005年第4期73-76,共4页 Journal of Irrigation and Drainage
关键词 MATLAB7.0 GA 惩罚函数 渡槽 优化设计 MATLAB7.0 GA penalty function flume optimum design
  • 相关文献

参考文献6

二级参考文献19

  • 1Rosen J B. The gradient projection methods for nonlinear programming [J]. SIAM Journal of Appl Math, 1960, 8: 181-217. 被引量:2
  • 2Wolf P. Methods of nonlinear programming [M]. In: Graves R L, Wolf P, eds. Recent Advances in Mathematical Programming. New York: McGraw-Hill, 1963. 被引量:2
  • 3Bazaraa M S, Shetty L M. Non-linear programming: theory andalgorithms [M]. New York: Wiley, 1993. 被引量:2
  • 4McCormick G P. Nonlinear programming: theory, algorithms and applications [M]. New York: Wiley, 1983. 被引量:2
  • 5Deb K, Agrawal S. A niched-penalty approach for constraint handling in genetic algorithms [C]. In: Montana D, ed. Proceedings of thd ICANNGA-99. Portoroz: Slovenia, 1999: 234-239. 被引量:2
  • 6Carlos A. Coello and efrén mezura-montes. Handling constraints in genetic algorithms using dominance-based tournaments [C]. In: Parmee I C, ed. Proceedings of the Fifth International Conference on Adaptive Computing Design and Manufacture (ACDM 2002). De 被引量:2
  • 7Kalyanmoy D. Efficient constraint handling method for genetic algorithms [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2): 311-338. 被引量:2
  • 8Eberhart R, Kennedy J. A new optimizer using particle swarm theory [C]. Proc of the 6th Intl. Piscataway, NJ: Symposium on Micro Machine and Human Science, IEEE Service Center, 1995: 39-43. 被引量:2
  • 9Parsopoulos K E, Vrahatis M N. Particle swarm optimizer in noisy and continuously changing environments [C]. In: Hamza M H, ed. Proceeding of the IASTED International Conference on Artificial Intelligence and Soft Computing. ICancun, Mexico: IASTED/ACTA P 被引量:2
  • 10Kennedy J, Eberhart R C, Shi Y. Swarm intelligence [M]. San Francisco: Morgan Kaufmann, 2001. 被引量:2

共引文献104

同被引文献41

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部