摘要
In this paper, curve shortening flow in Euclidian space R^n(n≥3) is studied, and S. Altschuler's results about flow for space curves are generalized. We prove that the curve shortening flow converges to a straight line in infinite time if the initial curve is a ramp. We also prove the planar phenomenon when the curve shortening flow blows up.
In this paper, curve shortening flow in Euclidian space R^n(n≥3) is studied, and S. Altschuler's results about flow for space curves are generalized. We prove that the curve shortening flow converges to a straight line in infinite time if the initial curve is a ramp. We also prove the planar phenomenon when the curve shortening flow blows up.