期刊文献+

Curve Shortening Flow in Arbitrary Dimensional Euclidian Space 被引量:3

Curve Shortening Flow in Arbitrary Dimensional Euclidian Space
原文传递
导出
摘要 In this paper, curve shortening flow in Euclidian space R^n(n≥3) is studied, and S. Altschuler's results about flow for space curves are generalized. We prove that the curve shortening flow converges to a straight line in infinite time if the initial curve is a ramp. We also prove the planar phenomenon when the curve shortening flow blows up. In this paper, curve shortening flow in Euclidian space R^n(n≥3) is studied, and S. Altschuler's results about flow for space curves are generalized. We prove that the curve shortening flow converges to a straight line in infinite time if the initial curve is a ramp. We also prove the planar phenomenon when the curve shortening flow blows up.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第4期715-722,共8页 数学学报(英文版)
关键词 Curve shortening flow Singularity formation Blow up Curve shortening flow, Singularity formation, Blow up
  • 相关文献

参考文献9

  • 1Clingenberg, W.: A course in differential geometry, Graduate Texts Mathematics, 51, Springcr-Verlag,Berlin, 1978. 被引量:1
  • 2Gage, M., Hamilton, R.: The heat equation shrinking convex plane curves, d. Diff. Geom., 23, 69-96(1986). 被引量:1
  • 3Altschuler, S., Grayson, M.: Shortening space curves and flow through singularities. J. Diff. Geom., 25,283-298 (1992). 被引量:1
  • 4Altschuler, S.: Singularities of the curve shrinking flow for space curves. J. Diff. Geom., 34, 491-514 (1991). 被引量:1
  • 5Grayson, M.: The heat equation shrinks embedded plane curves to round points. J. Diff. Geom., 26,285-314 (1987). 被引量:1
  • 6Huisken, G.: Asymptotic behaviour for singularities of the mean curvature flow. J. Diff. Geom., 31,285-299 (1990). 被引量:1
  • 7Horn, R.: On Fenchel's theorem. Amer. Math. Monthly, 78, 380-381 (1971). 被引量:1
  • 8Spivak, M.: A comprehensive introduction to differentiai geometry. Vol. 4, 2nd edition, Publisher or Perish,Inc, Berkely, 1997. 被引量:1
  • 9Angenent, S.: Parabolic equations for curves on surfaces Ⅱ, Intersections, blow up and generalized solutions. Ann. Math., 131(2), 171-215 (1991). 被引量:1

同被引文献2

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部