摘要
系统称为null的,如果对任意序列,它的序列熵为零.双符号等长代换及其对应的代换极小系统可分成三类:有限的、离散的和连续的.容易看出离散的代换极小系统是null的,Goodman证明了连续的代换极小系统不是null的.本文将完全刻画所有的双符号等长代换极小系统的序列墒.
A dynamical system is null if its sequence entropy is zero for any sequence. Substitutions of constant length on two symbols and their corresponding minimal dynamical systems are divided into three types: finite, discrete and continuous. It is easy to see that such a substitution of finite type is null, and Goodman showed that the one of continuous type is not null. In this paper we completely determine which substitution of discrete type is null.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2005年第5期833-840,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金973资助项目
关键词
极小系统
子代换
拓扑序列墒
Minimal system
Substitution
Topological sequence entropy