期刊文献+

磨粒图象背景光照不均匀分布图象预处理 被引量:3

The Pretreatment of Segmentation on Distributing Uneven Background Brightness of Wear Particle Image
下载PDF
导出
摘要 针对磨粒图片背景亮度呈现分布不均的问题,采用两种计算机图象处理方式进行了预处理,得到比较完整的二值图。第一种方式是:在没有铁磨粒情况下采集背景亮度变化,通过数字处理得到背景亮度变化的差值,然后将亮度补偿到铁谱图上。试验结果表明,该方法在边缘信息损失很小的情况下,得到磨粒二值图。第二种是:在不能得到背景光的条件下,通过一阶和二阶差分处理及其变形方法,来消除背景梯度变化,从而消除背景光的低频噪声。从试验效果来看,一阶和二阶差分不仅能进行边缘检测,而且能通过卷积运算消除背景光分布不均,磨粒边缘有点扩大,有些少量信息损失掉了,这种损失可以用图象形态学中的腐蚀的方法消除。两种方法相比,采用背景补偿的方法效果更好一些,在条件许可的情况下尽量采用背景光补偿方法。 Two kinds of computer image processing methods were used for the analysis of uneven background brightness distributing of ferrography images. For the first method, the uneven background brightness distributing was compensated by collecting background brightness of ferrography image. This method has little loss of marginal information. For the second method ,the uneven distributing of ferrography images was treated through the first and the second orders operation to eliminate the change of background gradient when the background brightness of ferrography images could not been gotten. This method can get the good background of ferrography images and segment wear particle from background. The image processing test shows that the first and the second orders operation can segment image and eliminate the uneven distribute of images background, but compensated method by collecting background brightness is better than orders first and second order operation methods.
出处 《润滑与密封》 CAS CSCD 北大核心 2005年第5期34-37,共4页 Lubrication Engineering
基金 国家自然科学基金项目(50275111) 教育部重点研究项目(重点02052教).
关键词 磨粒图象 噪声 预处理 图象分割 wear particle image noise pretreatment image segmentation
  • 相关文献

参考文献7

  • 1容观澳编著..计算机图象处理[M].北京:清华大学出版社,2000:353.
  • 2章毓晋.图象理解与计算机视觉:下册[M].清华大学出版社,2000.. 被引量:1
  • 3Zhang Y J,Gerbrands J J.Objective and quantitative segmentation evaluation and companion[J].Signal Processing,1994,39:43~54. 被引量:1
  • 4Rcsefeld A,Davis L S.Image segmentation and image models[J].Proceedings of IEEE,1979,67(5):764~772. 被引量:1
  • 5Canny,John.A Computational Approach to Edge Detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,PAMI-8(6):679~698. 被引量:1
  • 6Lim,Jae S.Two-Dimensional Signal and Image Processing[M].Englewood Cliffs,NJ:Prentice Hall,1990.478~488. 被引量:1
  • 7Parker,James R.Algorithms for Image Processing and Computer Vision[M].New York: John Wiley & Sons,Inc.,1997.23~29. 被引量:1

同被引文献17

  • 1章萍,黄勇理.基于显微观测及图像处理的颗粒检测综述[J].现代测量与实验室管理,2004,12(2):3-6. 被引量:5
  • 2王平,洪向共,杨华,邱文华,白俊杰.基于彩色图像分割的飞机机头定位方法[J].中国图象图形学报,2006,11(11):1716-1719. 被引量:4
  • 3夏至新.液压系统污染控制[M].北京:机械工业出版社,1992 被引量:2
  • 4李志勇,沈振康,杨卫平等.动态图像分析[M].北京:国防工业出版社,1999 被引量:2
  • 5Toms L A.Machinery Oil Analysis-methods,Automation & Benefits[M].2nd Edition.Virginia Beach:Coastal Skills Training,1998 被引量:1
  • 6Tasbaz O D,Wood R J K,Browne M.Electrostatic monitoring of oil lubricated sliding point contacts for early detection of scuffing[J].Wear Journal,1998 被引量:1
  • 7Fitch J,Troyer D.Oil Analysis Basics[M].Tulsa,Okla:Noria,2001 被引量:1
  • 8David C,et al.Advances in real time oil analysis[J].Practicing Oil Analysis Magazine,2000,(11):28~34 被引量:1
  • 9XIAO H L. The development of ferrography in China-some personal reflections [J]. Tribology International, 2005, 38: 904-907. 被引量:1
  • 10MILLER J L, KITALJEVICH D. In-line oil debris monitor for aircraft engine condition assessment[C]//Aerospace Conference Proceedings 2000 IEEE, Manhattan, 2000, 18-25: 49-56. 被引量:1

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部