摘要
多项式在有理数域上可约的问题可以归结到整系数多项式能否分解成次数较低的整系数多项式的乘积的问题.Kronecker和E isenste in分别给出了整系数多项式在有理数域上是否可约的判别方法,本文给出了另外一个判别整系数多项式不可约的判别法,对E isenste in判别法予以补充.
The conception of Hermite -polynomial comes from Hermite -equation, also comes from function e^(2xt-t2) with repect to t's power series expansion. Hermite polynomial has orthogonality under the power function e . Conversely in the proper condition,it can prove the polynomial having orthogonality that must be Hermite - polynomial.
出处
《青海师专学报》
2005年第6期26-27,共2页
Journal of Qinghai Junior Teachers' College
关键词
多项式
可约
判别法
polynomial
equation
orthogonality