期刊文献+

HCL2000手写汉字数据库的更新及相关研究 被引量:4

The New Edition of HCL2000 and its Application
下载PDF
导出
摘要 HCL2000是目前最具影响力的手写汉字数据库之一,基于研究手写汉字规律的设计初衷,该数据库采用了以书写者为单位按文件形式组织和存放的方式。本文则从研究样本选择的应用角度出发,对HCL2000中的样本进行了重新组织,同时对该数据库中的错误进行了纠正,生成了一个新的手写汉字数据库HCL2004。文章最后基于HCL2004数据库和方向线素特征进行了有关训练样本数对识别性能影响的研究,给出了3755类大字符集情况下的最佳训练样本数为300的结论,同时还对识别过程中的样本选择问题进行了探讨。 HCL2000 is one of the most influential handwritten Chinese characters databases. In order to research the nature features of handwritten Chinese characters, the files of database are organized in the mode of the writers. But this form of the files organization is not always the most effective in other researches such as the research on pattern selection. By this reason, a new model of characters database is developed. Based on the new model and HCL2000, a newly edited version of HCL2000- HCL2004 is developed by reorganizing and revising the samples. Then two experiments are arranged. One is focused on the effect of the number of the training samples. From this experiment, we can see the relation of the number of the training samples and the system performance. And for 3755 characters classes, to achieve the optimal system performance need 300 training samples of each character. The other experiment in the paper is about the seleetion of the training and testing samples.
作者 任俊玲 郭军
出处 《中文信息学报》 CSCD 北大核心 2005年第5期97-104,共8页 Journal of Chinese Information Processing
基金 教育部跨世纪人才基金和教育部重点科研项目资助(02029)
关键词 人工智能 模式识别 HCL2000 手写汉字数据库 样本选择 HCL2004 artificial intelligence pattern recognition HCL2000 handwritten Chinese characters database pattern selection HCL2004
  • 相关文献

参考文献9

  • 1郭军,蔺志青,张洪刚.一个新的脱机手写汉字数据库模型及其应用[J].电子学报,2000,28(5):115-116. 被引量:15
  • 2蔺志青,郭军.一种相似汉字的识别算法[J].中文信息学报,2002,16(5):44-48. 被引量:14
  • 3Christopher, J.C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition [J]. Data Mining and Knowledge Discovery, 1998,2(2): 121 - 167. 被引量:1
  • 4B.B. Chaudhuri, How to Choose a Representative Subset from a Set of Data in Multi - dimensional Space [J]. Pattern Recognition Lett. 被引量:1
  • 5B.H. Juang and S. Katagiri, Discriminative Learning for Minimum Error Classification[A]. IEEE Trans. Signal Proeessing[C], Dec. 1992. 被引量:1
  • 6Vladimir N Vapnik.统计学习理论的本质[M].北京:清华大学出版社,2003,9.. 被引量:1
  • 7边肇祺等编著..模式识别 第2版[M].北京:清华大学出版社,2000:338.
  • 8Jun Guo, Ning Sun, Y. Nemoto, Recognition of Handwritten Characters Using Pattern Transformation Method with Cosine Function[ C]. IEICE. Vol. J76- D- Ⅱ, No.4, 1993, 835 - 842. 被引量:1
  • 9Trier O D, Jain A K, Taxt T, Feature Extraction Methods for Character Recognition- A Survey [J]. Pattern Recognition, 1996, 29(4): 641 - 662. 被引量:1

二级参考文献5

共引文献26

同被引文献37

  • 1曾铭,俞俊生,刘绍华.一种用于社交网站的云安全敏感信息过滤模型[J].华中科技大学学报(自然科学版),2012,40(S1):211-214. 被引量:4
  • 2郭军,马跃,盛立东,钟义信.发展中的文字识别理论与技术[J].电子学报,1995,23(10):184-187. 被引量:21
  • 3刘伟,朱宁波,何浩智,李德鑫,孙发军.基于弹性网格模糊特征的手写体汉字识别方法[J].中文信息学报,2007,21(3):117-121. 被引量:10
  • 4S Mori,K Yamamoto,M Yasuda.Research on machine recognition of handprinted characters[J].IEEE Trans,1984,PAMI-6(4):386-405. 被引量:1
  • 5T W Hildebrand,W Liu.Optical recognition of handwritten Chinese characters:advances since 1980[J].Pattern Recognition,1993,26(2):205-225. 被引量:1
  • 6N Kato,M Suzuki,S Omachi.A handwritten character recognition system using directional element feature and asymmetric mahalanobis distance[J].IEEE Trans,1999,PAMI-21(3):258-262. 被引量:1
  • 7J Guo,N Sun,Y Nemoto,R Sato.Recognition of handwritten characters using pattern transformation method with Cosine function[A].IEICE[C].J76-D-II,No.4,1993.835-842. 被引量:1
  • 8J Guo,N Sun,Y Nemoto,R Sato.Recognition of handwritten character database ETL9B using pattern transformation method[J].IEICE Trans,1993,J76-D-II(5):1015-1022. 被引量:1
  • 9N Sun,J Guo,Y Nemoto,R Sato.A new algorithm of handwritten character recognition by estimating the standard deviation of input pattern[J].IEICE Trans,1994,J77-D-II(1):79-90. 被引量:1
  • 10Srihari S N, Yang Xuanshen, Ball G R. Offline Chinese Handwriting Recognition: A Survey[M]. Beijing: Higher Education Press, 2007. 被引量:1

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部