期刊文献+

向量Ky Fan极大极小原理及应用

Vector Ky Fan Minimax Principle and Its Applications
下载PDF
导出
摘要 讨论了几种推广形式的向量Ky Fan极大极小原理的存在问题,作为应用,还讨论了向量支付映射的对策系统的Nash平衡点的存在性及一类向量隐变分不等式的解的存在性. In this paper, we discuss the existence of solutions to generalized vector Ky Fan minimax principle , and we discuss the existence of Nash equilibria for vector payoff and an implicit vector variational inequality.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第3期12-15,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 广东省自然科学基金资助项目(022001) 广东省"千百十"基金资助项目(02052)
关键词 不动点 NASH平衡点 极大极小原理 向量隐变分不等式 fixed point Nash equilibria minimax principle implicit vector variational inequality
  • 相关文献

参考文献7

  • 1罗群.拓扑半格上的向量Ky Fan不等式[J].河南师范大学学报(自然科学版),2004,32(1):7-11. 被引量:2
  • 2Klein E,Thomopson A C. Theory of Correspondences[M]. New York:Wiley, 1984. 72-78. 被引量:1
  • 3Aubin J P, Ekeland I. Applied nonlinear analysis[M]. New York:John Wiley and Sons, 1984.111-112. 被引量:1
  • 4Browder F. The fixed point theory of muti-valued mappings in topological vector spaces[J]. Math Ann, 1968,177: 183-301. 被引量:1
  • 5Chiang Y. Existence of solutions to implicit vector variational inequalities [J]. J Opti Theory and Appl, 2003,116 (2):251-264. 被引量:1
  • 6Tanaka T. Generalized semicontinuity and existence theorems for cone saddle points[J]. Applied Mathematics and Optimization, 1997,36:313-322. 被引量:1
  • 7Li J, Huang N J, Kim J K. On implieit veetor equilibrium problems[J]. J Math Anal Appl, 2003,283 : 501-512. 被引量:1

二级参考文献7

  • 1Fan K. A Minimax Inequality and its Applications (in: Inequalities Ⅲ, edited by O. Shisha. )[M]. London:Academic Press, 1972. 103-113. 被引量:1
  • 2Klein E,Thomopson A C. Theory of Correspondences[M]. New York :Wiley, 1984.89. 被引量:1
  • 3Chen G Y. Existence of Solution for a Vector Variation Inequality : an Extension of the Hartmann-Stampacchia Theorem[J].Journal of Optimization Theory and Applications, 1992,74 : 445- 456. 被引量:1
  • 4Horvath C D,Llinares Ciscar J V. Maximal Elements and Fixed Points for Binary Relations on Topological Ordered Spaces[J]. J Math Econom, 1996,25: 291 - 306. 被引量:1
  • 5LUO Q. KKM and Nash Equilibria Type Theorems in Topological Ordered Spaces[J]. J Math Anal Appl, 2001,264 : 262-269. 被引量:1
  • 6Ansari Q H. Vector equilibrium problems and vector variational inequalities[A]. In:Giannessi F. Vector variational inequalities and vector equilibria mathematical theories[C]. The Netherlands: Kluwer Academic Publishers, 2000. 1-15. 被引量:1
  • 7Border K C. Fixed Point Theorems with Applications to Economics and Game Theory[M]. Cambridge University Press:Cambridge, 1985.34. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部