摘要
文中根据光在生物体内传播的漫射方程理论,以人体组织为多层介质,在平稳状态条件下,使用外推边界条件,精确给出了匹配介质中平稳状态下四层体系光的漫射方程格林函数的解,通过此解,可以算出空间分辨漫反射。使用蒙特卡罗方法来验证四层体系的漫射方程,发现,我们给出的理论解不仅可以包括两层体系模型的空间分辨漫反射的解,与A.Kienle的两层体系的结论一致,而且在四层体系中,四层体系漫射方程的空间分辨漫反射的解和蒙特卡罗方法的基本一致。通过估计吸收系数和等效各项同性散射系数,这个模型在医疗和诊断上具有潜在的应用价值。
Near-IR radiation is often utilized to detect the properties in tissues. Up to now,a semi-infinite media pboton migration model and a two-layered turbid medium model are utilized widely. But actually, there is a multi-layered turbid medium in tissue. In the paper, According to the diffusion equation, employing the extrapolated boundary condition,we analyze the diffusion of photons of a four-layered matched medium and deduce the solution of Green's function. Through comparing the spatially resolved reflectance between the solution of four-layered matched media diffusion equation and Monte-Carle simulation, we find our solution of a four - layered matched media theory not only accord with a two-layerod turbid medium model which is solved by A. Kienle,but also accord with Monte-Carlo simulation.
出处
《激光与红外》
CAS
CSCD
北大核心
2005年第7期534-537,共4页
Laser & Infrared
基金
国家自然科学基金(No.10404022)资助项目。