期刊文献+

Aleksandrov-Fenchel不等式及应用

THE ALEKSANDROV-FENCHEL INEQUALITIES AND APPLICATIONS
下载PDF
导出
摘要 本文运用Aleksandrov-Fenchel不等式,首先推广了Lutwak,Bonnesen和Fenchel等建立的三个有用的定理,这三个定理在解决某些唯一性问题中扮演着重要角色.然后,把这些结果从一般的混合体积和投影体推广到混合投影体的极和混合仿射表面积上,获得了一些较理想的结果. By using the Aleksandrov-Fenchel inequalities, the authors first generalize Lutwak and Bonnesen-Fenchel's three important theorems which have been very valuable in answering a variety of uniqueness questions. Then, the authors improve above results from mixed volume and projection bodies to the polars of mixed projection bodies and affine surface area, and get some analogous results.
出处 《数学年刊(A辑)》 CSCD 北大核心 2005年第4期585-594,共10页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10271071)山东省高校中青年学术骨干基金(No.200203)资助的项目.
关键词 凸体 投影体 投影体的极 对偶混合体积 Aleksandrov-Fenchel不等式 Convex body, Projection body, Polar of projection body, Dualmixed volume, Aleksandrov-Fenchel inequality
  • 相关文献

参考文献1

二级参考文献11

  • 1冷岗松,张连生.Extreme properties of quermassintegrals of convex bodies[J].Science China Mathematics,2001,44(7):837-845. 被引量:3
  • 2Yang,L.,Zhang,J. Z.Pseudo-symmetric sets and related geometric inequalities[].Acta Math Sinica Chinese series.1986 被引量:1
  • 3Hardy,G.H.,Littlewood,J.E.,Pólya,G. Inequalities . 1934 被引量:1
  • 4Rogers C. A.Setions and projection of convex bodies[].Portugaliae Mathematica.1965 被引量:1
  • 5Lutwak E.On quermassintegrals of mixed projection bodies, Geom[].Dedicata.1990 被引量:1
  • 6Lutwak,E.Volume of mixed bodies, Trans[].Journal of the American Mathematical Society.1986 被引量:1
  • 7Bonnesen T,Fenchel W.Theorie der Konvexen K(?)rper[]..1934 被引量:1
  • 8Martin H.Zurbesimmung konvexer polytope durch the inhalte ihrer projec-tion[].beitrage Zui Algebra und geometrie.1984 被引量:1
  • 9Witsenhausen,H. S.A support characterization of the zonotopes[].Mathematika.1978 被引量:1
  • 10Lutwak,E.Centroid bodies and dual mixed volumes, Proc[].London Mathematical Society.1990 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部